Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3lem Structured version   Visualization version   GIF version

Theorem cxpcn3lem 24533
 Description: Lemma for cxpcn3 24534. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
cxpcn3.u 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
cxpcn3.t 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
Assertion
Ref Expression
cxpcn3lem ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
Distinct variable groups:   𝑎,𝑏,𝑑,𝐴   𝐸,𝑎,𝑏,𝑑   𝐽,𝑑   𝐾,𝑎,𝑏,𝑑   𝐷,𝑎,𝑏,𝑑   𝐿,𝑎,𝑏,𝑑   𝑇,𝑎,𝑏,𝑑
Allowed substitution hints:   𝑈(𝑎,𝑏,𝑑)   𝐽(𝑎,𝑏)

Proof of Theorem cxpcn3lem
StepHypRef Expression
1 cxpcn3.t . . 3 𝑇 = if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈)))
2 cxpcn3.u . . . . 5 𝑈 = (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2)
3 cxpcn3.d . . . . . . . . . . 11 𝐷 = (ℜ “ ℝ+)
43eleq2i 2722 . . . . . . . . . 10 (𝐴𝐷𝐴 ∈ (ℜ “ ℝ+))
5 ref 13896 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
6 ffn 6083 . . . . . . . . . . 11 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
7 elpreima 6377 . . . . . . . . . . 11 (ℜ Fn ℂ → (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+)))
85, 6, 7mp2b 10 . . . . . . . . . 10 (𝐴 ∈ (ℜ “ ℝ+) ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
94, 8bitri 264 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℝ+))
109simprbi 479 . . . . . . . 8 (𝐴𝐷 → (ℜ‘𝐴) ∈ ℝ+)
1110adantr 480 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ+)
12 1rp 11874 . . . . . . 7 1 ∈ ℝ+
13 ifcl 4163 . . . . . . 7 (((ℜ‘𝐴) ∈ ℝ+ ∧ 1 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1411, 12, 13sylancl 695 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
1514rphalfcld 11922 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ∈ ℝ+)
162, 15syl5eqel 2734 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑈 ∈ ℝ+)
17 simpr 476 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝐸 ∈ ℝ+)
1816rpreccld 11920 . . . . . 6 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ+)
1918rpred 11910 . . . . 5 ((𝐴𝐷𝐸 ∈ ℝ+) → (1 / 𝑈) ∈ ℝ)
2017, 19rpcxpcld 24521 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
2116, 20ifcld 4164 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ∈ ℝ+)
221, 21syl5eqel 2734 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → 𝑇 ∈ ℝ+)
23 elrege0 12316 . . . 4 (𝑎 ∈ (0[,)+∞) ↔ (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
24 0red 10079 . . . . . . 7 ((𝐴𝐷𝐸 ∈ ℝ+) → 0 ∈ ℝ)
25 leloe 10162 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
2624, 25sylan 487 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 ↔ (0 < 𝑎 ∨ 0 = 𝑎)))
27 elrp 11872 . . . . . . . . 9 (𝑎 ∈ ℝ+ ↔ (𝑎 ∈ ℝ ∧ 0 < 𝑎))
28 simp2l 1107 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ+)
29 simp2r 1108 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏𝐷)
30 cnvimass 5520 . . . . . . . . . . . . . . . . . 18 (ℜ “ ℝ+) ⊆ dom ℜ
315fdmi 6090 . . . . . . . . . . . . . . . . . 18 dom ℜ = ℂ
3230, 31sseqtri 3670 . . . . . . . . . . . . . . . . 17 (ℜ “ ℝ+) ⊆ ℂ
333, 32eqsstri 3668 . . . . . . . . . . . . . . . 16 𝐷 ⊆ ℂ
3433sseli 3632 . . . . . . . . . . . . . . 15 (𝑏𝐷𝑏 ∈ ℂ)
3529, 34syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑏 ∈ ℂ)
36 abscxp 24483 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ+𝑏 ∈ ℂ) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3728, 35, 36syl2anc 694 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) = (𝑎𝑐(ℜ‘𝑏)))
3835recld 13978 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝑏) ∈ ℝ)
3928, 38rpcxpcld 24521 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ+)
4039rpred 11910 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) ∈ ℝ)
41163ad2ant1 1102 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ+)
4241rpred 11910 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ∈ ℝ)
4328, 42rpcxpcld 24521 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ+)
4443rpred 11910 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) ∈ ℝ)
45 simp1r 1106 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ+)
4645rpred 11910 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐸 ∈ ℝ)
47 simp1l 1105 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴𝐷)
489simplbi 475 . . . . . . . . . . . . . . . . . . 19 (𝐴𝐷𝐴 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝐴 ∈ ℂ)
5049recld 13978 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℝ)
5150rehalfcld 11317 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) ∈ ℝ)
52 1re 10077 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
53 min1 12058 . . . . . . . . . . . . . . . . . . 19 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
5450, 52, 53sylancl 695 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴))
55143ad2ant1 1102 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ+)
5655rpred 11910 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ)
57 2re 11128 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
5857a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 2 ∈ ℝ)
59 2pos 11150 . . . . . . . . . . . . . . . . . . . 20 0 < 2
6059a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 0 < 2)
61 lediv1 10926 . . . . . . . . . . . . . . . . . . 19 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6256, 50, 58, 60, 61syl112anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ (ℜ‘𝐴) ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2)))
6354, 62mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ ((ℜ‘𝐴) / 2))
642, 63syl5eqbr 4720 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ ((ℜ‘𝐴) / 2))
6550recnd 10106 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) ∈ ℂ)
66652halvesd 11316 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) = (ℜ‘𝐴))
6749, 35resubd 14000 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) = ((ℜ‘𝐴) − (ℜ‘𝑏)))
6849, 35subcld 10430 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐴𝑏) ∈ ℂ)
6968recld 13978 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ∈ ℝ)
7068abscld 14219 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) ∈ ℝ)
7168releabsd 14234 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) ≤ (abs‘(𝐴𝑏)))
72 simp3r 1110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑇)
7372, 1syl6breq 4726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
74203ad2ant1 1102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ+)
7574rpred 11910 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸𝑐(1 / 𝑈)) ∈ ℝ)
76 ltmin 12063 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((abs‘(𝐴𝑏)) ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7770, 42, 75, 76syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈)))))
7873, 77mpbid 222 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((abs‘(𝐴𝑏)) < 𝑈 ∧ (abs‘(𝐴𝑏)) < (𝐸𝑐(1 / 𝑈))))
7978simpld 474 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝐴𝑏)) < 𝑈)
8069, 70, 42, 71, 79lelttrd 10233 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < 𝑈)
8169, 42, 51, 80, 64ltletrd 10235 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘(𝐴𝑏)) < ((ℜ‘𝐴) / 2))
8267, 81eqbrtrrd 4709 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2))
8350, 38, 51ltsubadd2d 10663 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) − (ℜ‘𝑏)) < ((ℜ‘𝐴) / 2) ↔ (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8482, 83mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (ℜ‘𝐴) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8566, 84eqbrtrd 4707 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2)))
8651, 38, 51ltadd1d 10658 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (((ℜ‘𝐴) / 2) < (ℜ‘𝑏) ↔ (((ℜ‘𝐴) / 2) + ((ℜ‘𝐴) / 2)) < ((ℜ‘𝑏) + ((ℜ‘𝐴) / 2))))
8785, 86mpbird 247 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((ℜ‘𝐴) / 2) < (ℜ‘𝑏))
8842, 51, 38, 64, 87lelttrd 10233 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < (ℜ‘𝑏))
8928rpred 11910 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℝ)
9052a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 1 ∈ ℝ)
9128rprege0d 11917 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 ∈ ℝ ∧ 0 ≤ 𝑎))
92 absid 14080 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → (abs‘𝑎) = 𝑎)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) = 𝑎)
94 simp3l 1109 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘𝑎) < 𝑇)
9593, 94eqbrtrrd 4709 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑇)
9695, 1syl6breq 4726 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))))
97 ltmin 12063 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝐸𝑐(1 / 𝑈)) ∈ ℝ) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9889, 42, 75, 97syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < if(𝑈 ≤ (𝐸𝑐(1 / 𝑈)), 𝑈, (𝐸𝑐(1 / 𝑈))) ↔ (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈)))))
9996, 98mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎 < 𝑈𝑎 < (𝐸𝑐(1 / 𝑈))))
10099simpld 474 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 𝑈)
101 rehalfcl 11296 . . . . . . . . . . . . . . . . . . 19 (1 ∈ ℝ → (1 / 2) ∈ ℝ)
10252, 101mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) ∈ ℝ)
103 min2 12059 . . . . . . . . . . . . . . . . . . . . 21 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
10450, 52, 103sylancl 695 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1)
105 lediv1 10926 . . . . . . . . . . . . . . . . . . . . 21 ((if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
10656, 90, 58, 60, 105syl112anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) ≤ 1 ↔ (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2)))
107104, 106mpbid 222 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (if((ℜ‘𝐴) ≤ 1, (ℜ‘𝐴), 1) / 2) ≤ (1 / 2))
1082, 107syl5eqbr 4720 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 ≤ (1 / 2))
109 halflt1 11288 . . . . . . . . . . . . . . . . . . 19 (1 / 2) < 1
110109a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 2) < 1)
11142, 102, 90, 108, 110lelttrd 10233 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑈 < 1)
11289, 42, 90, 100, 111lttrd 10236 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < 1)
11328, 42, 112, 38cxplt3d 24523 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 < (ℜ‘𝑏) ↔ (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈)))
11488, 113mpbid 222 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < (𝑎𝑐𝑈))
11541rpcnne0d 11919 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 ∈ ℂ ∧ 𝑈 ≠ 0))
116 recid 10737 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ ℂ ∧ 𝑈 ≠ 0) → (𝑈 · (1 / 𝑈)) = 1)
117115, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑈 · (1 / 𝑈)) = 1)
118117oveq2d 6706 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = (𝑎𝑐1))
11941rpreccld 11920 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℝ+)
120119rpcnd 11912 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (1 / 𝑈) ∈ ℂ)
12128, 42, 120cxpmuld 24525 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(𝑈 · (1 / 𝑈))) = ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)))
12228rpcnd 11912 . . . . . . . . . . . . . . . . . 18 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 ∈ ℂ)
123122cxp1d 24497 . . . . . . . . . . . . . . . . 17 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐1) = 𝑎)
124118, 121, 1233eqtr3d 2693 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) = 𝑎)
12599simprd 478 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → 𝑎 < (𝐸𝑐(1 / 𝑈)))
126124, 125eqbrtrd 4707 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈)))
12743rprege0d 11917 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)))
12845rprege0d 11917 . . . . . . . . . . . . . . . 16 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
129 cxplt2 24489 . . . . . . . . . . . . . . . 16 ((((𝑎𝑐𝑈) ∈ ℝ ∧ 0 ≤ (𝑎𝑐𝑈)) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) ∧ (1 / 𝑈) ∈ ℝ+) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
130127, 128, 119, 129syl3anc 1366 . . . . . . . . . . . . . . 15 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → ((𝑎𝑐𝑈) < 𝐸 ↔ ((𝑎𝑐𝑈)↑𝑐(1 / 𝑈)) < (𝐸𝑐(1 / 𝑈))))
131126, 130mpbird 247 . . . . . . . . . . . . . 14 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐𝑈) < 𝐸)
13240, 44, 46, 114, 131lttrd 10236 . . . . . . . . . . . . 13 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (𝑎𝑐(ℜ‘𝑏)) < 𝐸)
13337, 132eqbrtrd 4707 . . . . . . . . . . . 12 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷) ∧ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)) → (abs‘(𝑎𝑐𝑏)) < 𝐸)
1341333expia 1286 . . . . . . . . . . 11 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏𝐷)) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
135134anassrs 681 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏𝐷) → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
136135ralrimiva 2995 . . . . . . . . 9 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
13727, 136sylan2br 492 . . . . . . . 8 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 0 < 𝑎)) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
138137expr 642 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 < 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
139 elpreima 6377 . . . . . . . . . . . . . . . . . . 19 (ℜ Fn ℂ → (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+)))
1405, 6, 139mp2b 10 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℜ “ ℝ+) ↔ (𝑏 ∈ ℂ ∧ (ℜ‘𝑏) ∈ ℝ+))
141140simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (ℜ “ ℝ+) → (ℜ‘𝑏) ∈ ℝ+)
142141, 3eleq2s 2748 . . . . . . . . . . . . . . . 16 (𝑏𝐷 → (ℜ‘𝑏) ∈ ℝ+)
143142rpne0d 11915 . . . . . . . . . . . . . . 15 (𝑏𝐷 → (ℜ‘𝑏) ≠ 0)
144 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑏 = 0 → (ℜ‘𝑏) = (ℜ‘0))
145 re0 13936 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
146144, 145syl6eq 2701 . . . . . . . . . . . . . . . 16 (𝑏 = 0 → (ℜ‘𝑏) = 0)
147146necon3i 2855 . . . . . . . . . . . . . . 15 ((ℜ‘𝑏) ≠ 0 → 𝑏 ≠ 0)
148143, 147syl 17 . . . . . . . . . . . . . 14 (𝑏𝐷𝑏 ≠ 0)
14934, 1480cxpd 24501 . . . . . . . . . . . . 13 (𝑏𝐷 → (0↑𝑐𝑏) = 0)
150149adantl 481 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0↑𝑐𝑏) = 0)
151150abs00bd 14075 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) = 0)
152 simpllr 815 . . . . . . . . . . . 12 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 𝐸 ∈ ℝ+)
153152rpgt0d 11913 . . . . . . . . . . 11 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → 0 < 𝐸)
154151, 153eqbrtrd 4707 . . . . . . . . . 10 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (abs‘(0↑𝑐𝑏)) < 𝐸)
155 oveq1 6697 . . . . . . . . . . . 12 (0 = 𝑎 → (0↑𝑐𝑏) = (𝑎𝑐𝑏))
156155fveq2d 6233 . . . . . . . . . . 11 (0 = 𝑎 → (abs‘(0↑𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
157156breq1d 4695 . . . . . . . . . 10 (0 = 𝑎 → ((abs‘(0↑𝑐𝑏)) < 𝐸 ↔ (abs‘(𝑎𝑐𝑏)) < 𝐸))
158154, 157syl5ibcom 235 . . . . . . . . 9 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (abs‘(𝑎𝑐𝑏)) < 𝐸))
159158a1dd 50 . . . . . . . 8 ((((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) ∧ 𝑏𝐷) → (0 = 𝑎 → (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
160159ralrimdva 2998 . . . . . . 7 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 = 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
161138, 160jaod 394 . . . . . 6 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → ((0 < 𝑎 ∨ 0 = 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16226, 161sylbid 230 . . . . 5 (((𝐴𝐷𝐸 ∈ ℝ+) ∧ 𝑎 ∈ ℝ) → (0 ≤ 𝑎 → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
163162expimpd 628 . . . 4 ((𝐴𝐷𝐸 ∈ ℝ+) → ((𝑎 ∈ ℝ ∧ 0 ≤ 𝑎) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
16423, 163syl5bi 232 . . 3 ((𝐴𝐷𝐸 ∈ ℝ+) → (𝑎 ∈ (0[,)+∞) → ∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
165164ralrimiv 2994 . 2 ((𝐴𝐷𝐸 ∈ ℝ+) → ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
166 breq2 4689 . . . . . 6 (𝑑 = 𝑇 → ((abs‘𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑇))
167 breq2 4689 . . . . . 6 (𝑑 = 𝑇 → ((abs‘(𝐴𝑏)) < 𝑑 ↔ (abs‘(𝐴𝑏)) < 𝑇))
168166, 167anbi12d 747 . . . . 5 (𝑑 = 𝑇 → (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) ↔ ((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇)))
169168imbi1d 330 . . . 4 (𝑑 = 𝑇 → ((((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
1701692ralbidv 3018 . . 3 (𝑑 = 𝑇 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)))
171170rspcev 3340 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑇 ∧ (abs‘(𝐴𝑏)) < 𝑇) → (abs‘(𝑎𝑐𝑏)) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
17222, 165, 171syl2anc 694 1 ((𝐴𝐷𝐸 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝐴𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  ifcif 4119   class class class wbr 4685  ◡ccnv 5142  dom cdm 5143   “ cima 5146   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  2c2 11108  ℝ+crp 11870  [,)cico 12215  ℜcre 13881  abscabs 14018   ↾t crest 16128  TopOpenctopn 16129  ℂfldccnfld 19794  ↑𝑐ccxp 24347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349 This theorem is referenced by:  cxpcn3  24534
 Copyright terms: Public domain W3C validator