MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpef Structured version   Visualization version   GIF version

Theorem cxpef 24318
Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpef ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))

Proof of Theorem cxpef
StepHypRef Expression
1 cxpval 24317 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
213adant2 1078 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))))
3 simp2 1060 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → 𝐴 ≠ 0)
43neneqd 2795 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → ¬ 𝐴 = 0)
54iffalsed 4071 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘𝐴))))
62, 5eqtrd 2655 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790  ifcif 4060  cfv 5849  (class class class)co 6607  cc 9881  0cc0 9883  1c1 9884   · cmul 9888  expce 14720  logclog 24212  𝑐ccxp 24213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-mulcl 9945  ax-i2m1 9951
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-iota 5812  df-fun 5851  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-cxp 24215
This theorem is referenced by:  cxpexpz  24320  logcxp  24322  1cxp  24325  ecxp  24326  rpcxpcl  24329  cxpne0  24330  cxpadd  24332  mulcxp  24338  cxpmul  24341  abscxp  24345  abscxp2  24346  cxplt  24347  cxple2  24350  cxpsqrtlem  24355  cxpsqrt  24356  cxpefd  24365  1cubrlem  24475  bposlem9  24924  iexpire  31350
  Copyright terms: Public domain W3C validator