MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpefd Structured version   Visualization version   GIF version

Theorem cxpefd 24371
Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
cxp0d.1 (𝜑𝐴 ∈ ℂ)
cxpefd.2 (𝜑𝐴 ≠ 0)
cxpefd.3 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
cxpefd (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))

Proof of Theorem cxpefd
StepHypRef Expression
1 cxp0d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cxpefd.2 . 2 (𝜑𝐴 ≠ 0)
3 cxpefd.3 . 2 (𝜑𝐵 ∈ ℂ)
4 cxpef 24324 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
51, 2, 3, 4syl3anc 1323 1 (𝜑 → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790  cfv 5852  (class class class)co 6610  cc 9885  0cc0 9887   · cmul 9892  expce 14724  logclog 24218  𝑐ccxp 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-mulcl 9949  ax-i2m1 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-cxp 24221
This theorem is referenced by:  dvcxp1  24394  dvcxp2  24395  dvcncxp1  24397  cxpcn  24399  abscxpbnd  24407  root1eq1  24409  cxpeq  24411  cxplogb  24437  efiatan  24552  efiatan2  24557  efrlim  24609  cxp2limlem  24615  cxploglim  24617  amgmlem  24629  zetacvg  24654  gamcvg2lem  24698  bposlem9  24930  chtppilimlem1  25075  ostth2lem4  25238  ostth2  25239  ostth3  25240  iprodgam  31363  proot1ex  37287  logcxp0  41642
  Copyright terms: Public domain W3C validator