![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxplogb | Structured version Visualization version GIF version |
Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
Ref | Expression |
---|---|
cxplogb | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logbval 24699 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) | |
2 | 1 | oveq2d 6825 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = (𝐵↑𝑐((log‘𝑋) / (log‘𝐵)))) |
3 | eldifi 3871 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ∈ ℂ) | |
4 | 3 | adantr 472 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ∈ ℂ) |
5 | eldif 3721 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1})) | |
6 | c0ex 10222 | . . . . . . . . 9 ⊢ 0 ∈ V | |
7 | 6 | prid1 4437 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
8 | eleq1 2823 | . . . . . . . 8 ⊢ (𝐵 = 0 → (𝐵 ∈ {0, 1} ↔ 0 ∈ {0, 1})) | |
9 | 7, 8 | mpbiri 248 | . . . . . . 7 ⊢ (𝐵 = 0 → 𝐵 ∈ {0, 1}) |
10 | 9 | necon3bi 2954 | . . . . . 6 ⊢ (¬ 𝐵 ∈ {0, 1} → 𝐵 ≠ 0) |
11 | 10 | adantl 473 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → 𝐵 ≠ 0) |
12 | 5, 11 | sylbi 207 | . . . 4 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → 𝐵 ≠ 0) |
13 | 12 | adantr 472 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → 𝐵 ≠ 0) |
14 | eldif 3721 | . . . . . . 7 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0})) | |
15 | 6 | snid 4349 | . . . . . . . . . 10 ⊢ 0 ∈ {0} |
16 | eleq1 2823 | . . . . . . . . . 10 ⊢ (𝑋 = 0 → (𝑋 ∈ {0} ↔ 0 ∈ {0})) | |
17 | 15, 16 | mpbiri 248 | . . . . . . . . 9 ⊢ (𝑋 = 0 → 𝑋 ∈ {0}) |
18 | 17 | necon3bi 2954 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ {0} → 𝑋 ≠ 0) |
19 | 18 | anim2i 594 | . . . . . . 7 ⊢ ((𝑋 ∈ ℂ ∧ ¬ 𝑋 ∈ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
20 | 14, 19 | sylbi 207 | . . . . . 6 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) |
21 | logcl 24510 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ) |
23 | 22 | adantl 473 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ) |
24 | 10 | anim2i 594 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ ¬ 𝐵 ∈ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
25 | 5, 24 | sylbi 207 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
26 | logcl 24510 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ∈ ℂ) |
28 | 27 | adantr 472 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ∈ ℂ) |
29 | eldifpr 4345 | . . . . . . 7 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
30 | 29 | biimpi 206 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
31 | 30 | adantr 472 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
32 | logccne0 24520 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
33 | 31, 32 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0) |
34 | 23, 28, 33 | divcld 10989 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((log‘𝑋) / (log‘𝐵)) ∈ ℂ) |
35 | 4, 13, 34 | cxpefd 24653 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐((log‘𝑋) / (log‘𝐵))) = (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)))) |
36 | eldifsn 4458 | . . . . . . 7 ⊢ (𝑋 ∈ (ℂ ∖ {0}) ↔ (𝑋 ∈ ℂ ∧ 𝑋 ≠ 0)) | |
37 | 36, 21 | sylbi 207 | . . . . . 6 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (log‘𝑋) ∈ ℂ) |
38 | 37 | adantl 473 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝑋) ∈ ℂ) |
39 | 29, 32 | sylbi 207 | . . . . . 6 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) → (log‘𝐵) ≠ 0) |
40 | 39 | adantr 472 | . . . . 5 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (log‘𝐵) ≠ 0) |
41 | 38, 28, 40 | divcan1d 10990 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (((log‘𝑋) / (log‘𝐵)) · (log‘𝐵)) = (log‘𝑋)) |
42 | 41 | fveq2d 6352 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = (exp‘(log‘𝑋))) |
43 | eflog 24518 | . . . . 5 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (exp‘(log‘𝑋)) = 𝑋) | |
44 | 36, 43 | sylbi 207 | . . . 4 ⊢ (𝑋 ∈ (ℂ ∖ {0}) → (exp‘(log‘𝑋)) = 𝑋) |
45 | 44 | adantl 473 | . . 3 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(log‘𝑋)) = 𝑋) |
46 | 42, 45 | eqtrd 2790 | . 2 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (exp‘(((log‘𝑋) / (log‘𝐵)) · (log‘𝐵))) = 𝑋) |
47 | 2, 35, 46 | 3eqtrd 2794 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 ≠ wne 2928 ∖ cdif 3708 {csn 4317 {cpr 4319 ‘cfv 6045 (class class class)co 6809 ℂcc 10122 0cc0 10124 1c1 10125 · cmul 10129 / cdiv 10872 expce 14987 logclog 24496 ↑𝑐ccxp 24497 logb clogb 24697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-iin 4671 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-of 7058 df-om 7227 df-1st 7329 df-2nd 7330 df-supp 7460 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-2o 7726 df-oadd 7729 df-er 7907 df-map 8021 df-pm 8022 df-ixp 8071 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-fsupp 8437 df-fi 8478 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-ioo 12368 df-ioc 12369 df-ico 12370 df-icc 12371 df-fz 12516 df-fzo 12656 df-fl 12783 df-mod 12859 df-seq 12992 df-exp 13051 df-fac 13251 df-bc 13280 df-hash 13308 df-shft 14002 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-limsup 14397 df-clim 14414 df-rlim 14415 df-sum 14612 df-ef 14993 df-sin 14995 df-cos 14996 df-pi 14998 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-ress 16063 df-plusg 16152 df-mulr 16153 df-starv 16154 df-sca 16155 df-vsca 16156 df-ip 16157 df-tset 16158 df-ple 16159 df-ds 16162 df-unif 16163 df-hom 16164 df-cco 16165 df-rest 16281 df-topn 16282 df-0g 16300 df-gsum 16301 df-topgen 16302 df-pt 16303 df-prds 16306 df-xrs 16360 df-qtop 16365 df-imas 16366 df-xps 16368 df-mre 16444 df-mrc 16445 df-acs 16447 df-mgm 17439 df-sgrp 17481 df-mnd 17492 df-submnd 17533 df-mulg 17738 df-cntz 17946 df-cmn 18391 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-fbas 19941 df-fg 19942 df-cnfld 19945 df-top 20897 df-topon 20914 df-topsp 20935 df-bases 20948 df-cld 21021 df-ntr 21022 df-cls 21023 df-nei 21100 df-lp 21138 df-perf 21139 df-cn 21229 df-cnp 21230 df-haus 21317 df-tx 21563 df-hmeo 21756 df-fil 21847 df-fm 21939 df-flim 21940 df-flf 21941 df-xms 22322 df-ms 22323 df-tms 22324 df-cncf 22878 df-limc 23825 df-dv 23826 df-log 24498 df-cxp 24499 df-logb 24698 |
This theorem is referenced by: relogbcxpb 24720 fllogbd 42860 nnpw2blen 42880 dignn0ldlem 42902 |
Copyright terms: Public domain | W3C validator |