MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul2 Structured version   Visualization version   GIF version

Theorem cxpmul2 24626
Description: Product of exponents law for complex exponentiation. Variation on cxpmul 24625 with more general conditions on 𝐴 and 𝐵 when 𝐶 is an integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
Assertion
Ref Expression
cxpmul2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))

Proof of Theorem cxpmul2
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6813 . . . . . . 7 (𝑥 = 0 → (𝐵 · 𝑥) = (𝐵 · 0))
21oveq2d 6821 . . . . . 6 (𝑥 = 0 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 0)))
3 oveq2 6813 . . . . . 6 (𝑥 = 0 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑0))
42, 3eqeq12d 2767 . . . . 5 (𝑥 = 0 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0)))
54imbi2d 329 . . . 4 (𝑥 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))))
6 oveq2 6813 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 · 𝑥) = (𝐵 · 𝑘))
76oveq2d 6821 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝑘)))
8 oveq2 6813 . . . . . 6 (𝑥 = 𝑘 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝑘))
97, 8eqeq12d 2767 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)))
109imbi2d 329 . . . 4 (𝑥 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘))))
11 oveq2 6813 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑘 + 1)))
1211oveq2d 6821 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · (𝑘 + 1))))
13 oveq2 6813 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))
1412, 13eqeq12d 2767 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
1514imbi2d 329 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
16 oveq2 6813 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 · 𝑥) = (𝐵 · 𝐶))
1716oveq2d 6821 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑐(𝐵 · 𝑥)) = (𝐴𝑐(𝐵 · 𝐶)))
18 oveq2 6813 . . . . . 6 (𝑥 = 𝐶 → ((𝐴𝑐𝐵)↑𝑥) = ((𝐴𝑐𝐵)↑𝐶))
1917, 18eqeq12d 2767 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥) ↔ (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
2019imbi2d 329 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑥)) = ((𝐴𝑐𝐵)↑𝑥)) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))))
21 cxp0 24607 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝑐0) = 1)
2221adantr 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐0) = 1)
23 mul01 10399 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 · 0) = 0)
2423adantl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · 0) = 0)
2524oveq2d 6821 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = (𝐴𝑐0))
26 cxpcl 24611 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2726exp0d 13188 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐𝐵)↑0) = 1)
2822, 25, 273eqtr4d 2796 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 0)) = ((𝐴𝑐𝐵)↑0))
29 oveq1 6812 . . . . . . 7 ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
30 0cn 10216 . . . . . . . . . . . . 13 0 ∈ ℂ
31 cxp0 24607 . . . . . . . . . . . . 13 (0 ∈ ℂ → (0↑𝑐0) = 1)
3230, 31ax-mp 5 . . . . . . . . . . . 12 (0↑𝑐0) = 1
33 1t1e1 11359 . . . . . . . . . . . 12 (1 · 1) = 1
3432, 33eqtr4i 2777 . . . . . . . . . . 11 (0↑𝑐0) = (1 · 1)
35 simplr 809 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐴 = 0)
36 simpr 479 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
3736oveq1d 6820 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = (0 · (𝑘 + 1)))
38 nn0p1nn 11516 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3938adantl 473 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
4039nncnd 11220 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
4140ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝑘 + 1) ∈ ℂ)
4241mul02d 10418 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · (𝑘 + 1)) = 0)
4337, 42eqtrd 2786 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · (𝑘 + 1)) = 0)
4435, 43oveq12d 6823 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐0))
4536oveq1d 6820 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = (0 · 𝑘))
46 nn0cn 11486 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
4746adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
4847ad2antrr 764 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → 𝑘 ∈ ℂ)
4948mul02d 10418 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (0 · 𝑘) = 0)
5045, 49eqtrd 2786 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐵 · 𝑘) = 0)
5135, 50oveq12d 6823 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = (0↑𝑐0))
5251, 32syl6eq 2802 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · 𝑘)) = 1)
5335, 36oveq12d 6823 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5453, 32syl6eq 2802 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
5552, 54oveq12d 6823 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (1 · 1))
5634, 44, 553eqtr4a 2812 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
57 simpll 807 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5857ad2antrr 764 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
59 simplr 809 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
6059, 47mulcld 10244 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵 · 𝑘) ∈ ℂ)
6160ad2antrr 764 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
62 cxpcl 24611 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑘) ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6358, 61, 62syl2anc 696 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · 𝑘)) ∈ ℂ)
6463mul01d 10419 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · 0) = 0)
65 simplr 809 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
6665oveq1d 6820 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
6759ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
68 simpr 479 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
69 0cxp 24603 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7067, 68, 69syl2anc 696 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
7166, 70eqtrd 2786 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
7271oveq2d 6821 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · 0))
7365oveq1d 6820 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (0↑𝑐(𝐵 · (𝑘 + 1))))
7440ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ∈ ℂ)
7567, 74mulcld 10244 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ∈ ℂ)
7639nnne0d 11249 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
7776ad2antrr 764 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑘 + 1) ≠ 0)
7867, 74, 68, 77mulne0d 10863 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐵 · (𝑘 + 1)) ≠ 0)
79 0cxp 24603 . . . . . . . . . . . . 13 (((𝐵 · (𝑘 + 1)) ∈ ℂ ∧ (𝐵 · (𝑘 + 1)) ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8075, 78, 79syl2anc 696 . . . . . . . . . . . 12 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐(𝐵 · (𝑘 + 1))) = 0)
8173, 80eqtrd 2786 . . . . . . . . . . 11 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = 0)
8264, 72, 813eqtr4rd 2797 . . . . . . . . . 10 (((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8356, 82pm2.61dane 3011 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
8459adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ)
8547adantr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝑘 ∈ ℂ)
86 1cnd 10240 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 1 ∈ ℂ)
8784, 85, 86adddid 10248 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + (𝐵 · 1)))
8884mulid1d 10241 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 1) = 𝐵)
8988oveq2d 6821 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → ((𝐵 · 𝑘) + (𝐵 · 1)) = ((𝐵 · 𝑘) + 𝐵))
9087, 89eqtrd 2786 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · (𝑘 + 1)) = ((𝐵 · 𝑘) + 𝐵))
9190oveq2d 6821 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = (𝐴𝑐((𝐵 · 𝑘) + 𝐵)))
9257adantr 472 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
93 simpr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
9460adantr 472 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐵 · 𝑘) ∈ ℂ)
95 cxpadd 24616 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 · 𝑘) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9692, 93, 94, 84, 95syl211anc 1479 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐((𝐵 · 𝑘) + 𝐵)) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9791, 96eqtrd 2786 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 ≠ 0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
9883, 97pm2.61dane 3011 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)))
99 expp1 13053 . . . . . . . . 9 (((𝐴𝑐𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10026, 99sylan 489 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐𝐵)↑(𝑘 + 1)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵)))
10198, 100eqeq12d 2767 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)) ↔ ((𝐴𝑐(𝐵 · 𝑘)) · (𝐴𝑐𝐵)) = (((𝐴𝑐𝐵)↑𝑘) · (𝐴𝑐𝐵))))
10229, 101syl5ibr 236 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1))))
103102expcom 450 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
104103a2d 29 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝑘)) = ((𝐴𝑐𝐵)↑𝑘)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · (𝑘 + 1))) = ((𝐴𝑐𝐵)↑(𝑘 + 1)))))
1055, 10, 15, 20, 28, 104nn0ind 11656 . . 3 (𝐶 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
106105com12 32 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶)))
1071063impia 1109 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  (class class class)co 6805  cc 10118  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  cn 11204  0cn0 11476  cexp 13046  𝑐ccxp 24493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ioc 12365  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-mod 12855  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-shft 13998  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-limsup 14393  df-clim 14410  df-rlim 14411  df-sum 14608  df-ef 14989  df-sin 14991  df-cos 14992  df-pi 14994  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cn 21225  df-cnp 21226  df-haus 21313  df-tx 21559  df-hmeo 21752  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-tms 22320  df-cncf 22874  df-limc 23821  df-dv 23822  df-log 24494  df-cxp 24495
This theorem is referenced by:  cxproot  24627  cxpmul2z  24628  cxpmul2d  24646
  Copyright terms: Public domain W3C validator