MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubg2cl Structured version   Visualization version   GIF version

Theorem cycsubg2cl 17626
Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
cycsubg2cl.x 𝑋 = (Base‘𝐺)
cycsubg2cl.t · = (.g𝐺)
cycsubg2cl.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
cycsubg2cl ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))

Proof of Theorem cycsubg2cl
StepHypRef Expression
1 cycsubg2cl.x . . . . . 6 𝑋 = (Base‘𝐺)
21subgacs 17623 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
32acsmred 16311 . . . 4 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
433ad2ant1 1081 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
5 simp2 1061 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝐴𝑋)
65snssd 4338 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → {𝐴} ⊆ 𝑋)
7 cycsubg2cl.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
87mrccl 16265 . . 3 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
94, 6, 8syl2anc 693 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
10 simp3 1062 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
114, 7, 6mrcssidd 16279 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
12 snssg 4325 . . . 4 (𝐴𝑋 → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴})))
13123ad2ant2 1082 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴})))
1411, 13mpbird 247 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
15 cycsubg2cl.t . . 3 · = (.g𝐺)
1615subgmulgcl 17601 . 2 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))
179, 10, 14, 16syl3anc 1325 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1482  wcel 1989  wss 3572  {csn 4175  cfv 5886  (class class class)co 6647  cz 11374  Basecbs 15851  Moorecmre 16236  mrClscmrc 16237  Grpcgrp 17416  .gcmg 17534  SubGrpcsubg 17582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-seq 12797  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-0g 16096  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-grp 17419  df-minusg 17420  df-mulg 17535  df-subg 17585
This theorem is referenced by:  odngen  17986
  Copyright terms: Public domain W3C validator