Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcyg Structured version   Visualization version   GIF version

Theorem cycsubgcyg 18223
 Description: The cyclic subgroup generated by 𝐴 is a cyclic group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cycsubgcyg.x 𝑋 = (Base‘𝐺)
cycsubgcyg.t · = (.g𝐺)
cycsubgcyg.s 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcyg ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem cycsubgcyg
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2621 . 2 (.g‘(𝐺s 𝑆)) = (.g‘(𝐺s 𝑆))
3 cycsubgcyg.s . . . 4 𝑆 = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
4 cycsubgcyg.x . . . . . 6 𝑋 = (Base‘𝐺)
5 cycsubgcyg.t . . . . . 6 · = (.g𝐺)
6 eqid 2621 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
74, 5, 6cycsubgcl 17541 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))))
87simpld 475 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ∈ (SubGrp‘𝐺))
93, 8syl5eqel 2702 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
10 eqid 2621 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
1110subggrp 17518 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
129, 11syl 17 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ Grp)
137simprd 479 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
1413, 3syl6eleqr 2709 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴𝑆)
1510subgbas 17519 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
169, 15syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝑆 = (Base‘(𝐺s 𝑆)))
1714, 16eleqtrd 2700 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
1816eleq2d 2684 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑦𝑆𝑦 ∈ (Base‘(𝐺s 𝑆))))
1918biimpar 502 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → 𝑦𝑆)
20 simpr 477 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦𝑆)
2120, 3syl6eleq 2708 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → 𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
22 oveq1 6611 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
2322cbvmptv 4710 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴))
24 ovex 6632 . . . . . 6 (𝑛 · 𝐴) ∈ V
2523, 24elrnmpti 5336 . . . . 5 (𝑦 ∈ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
2621, 25sylib 208 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴))
279ad2antrr 761 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑆 ∈ (SubGrp‘𝐺))
28 simpr 477 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
2914ad2antrr 761 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → 𝐴𝑆)
305, 10, 2subgmulg 17529 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑆) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3127, 28, 29, 30syl3anc 1323 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3231eqeq2d 2631 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) ∧ 𝑛 ∈ ℤ) → (𝑦 = (𝑛 · 𝐴) ↔ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3332rexbidva 3042 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝐴) ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴)))
3426, 33mpbid 222 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑆) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
3519, 34syldan 487 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦 ∈ (Base‘(𝐺s 𝑆))) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g‘(𝐺s 𝑆))𝐴))
361, 2, 12, 17, 35iscygd 18210 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐺s 𝑆) ∈ CycGrp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2908   ↦ cmpt 4673  ran crn 5075  ‘cfv 5847  (class class class)co 6604  ℤcz 11321  Basecbs 15781   ↾s cress 15782  Grpcgrp 17343  .gcmg 17461  SubGrpcsubg 17509  CycGrpccyg 18200 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mulg 17462  df-subg 17512  df-cyg 18201 This theorem is referenced by:  cycsubgcyg2  18224
 Copyright terms: Public domain W3C validator