MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggeninv Structured version   Visualization version   GIF version

Theorem cyggeninv 19004
Description: The inverse of a cyclic generator is a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggeninv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
cyggeninv ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑁,𝑥   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)

Proof of Theorem cyggeninv
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscyg.1 . . . . 5 𝐵 = (Base‘𝐺)
2 iscyg.2 . . . . 5 · = (.g𝐺)
3 iscyg3.e . . . . 5 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen2 19002 . . . 4 (𝐺 ∈ Grp → (𝑋𝐸 ↔ (𝑋𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))))
54simprbda 501 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → 𝑋𝐵)
6 cyggeninv.n . . . 4 𝑁 = (invg𝐺)
71, 6grpinvcl 18153 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
85, 7syldan 593 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐵)
94simplbda 502 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋))
10 oveq1 7165 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 · 𝑋) = (𝑚 · 𝑋))
1110eqeq2d 2834 . . . . . 6 (𝑛 = 𝑚 → (𝑦 = (𝑛 · 𝑋) ↔ 𝑦 = (𝑚 · 𝑋)))
1211cbvrexvw 3452 . . . . 5 (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) ↔ ∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋))
13 znegcl 12020 . . . . . . . . 9 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
1413adantl 484 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
15 simpr 487 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
1615zcnd 12091 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
1716negnegd 10990 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → --𝑚 = 𝑚)
1817oveq1d 7173 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (𝑚 · 𝑋))
19 simplll 773 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝐺 ∈ Grp)
205ad2antrr 724 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → 𝑋𝐵)
211, 2, 6mulgneg2 18263 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ -𝑚 ∈ ℤ ∧ 𝑋𝐵) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2219, 14, 20, 21syl3anc 1367 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (--𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
2318, 22eqtr3d 2860 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋)))
24 oveq1 7165 . . . . . . . . 9 (𝑛 = -𝑚 → (𝑛 · (𝑁𝑋)) = (-𝑚 · (𝑁𝑋)))
2524rspceeqv 3640 . . . . . . . 8 ((-𝑚 ∈ ℤ ∧ (𝑚 · 𝑋) = (-𝑚 · (𝑁𝑋))) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
2614, 23, 25syl2anc 586 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋)))
27 eqeq1 2827 . . . . . . . 8 (𝑦 = (𝑚 · 𝑋) → (𝑦 = (𝑛 · (𝑁𝑋)) ↔ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2827rexbidv 3299 . . . . . . 7 (𝑦 = (𝑚 · 𝑋) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)) ↔ ∃𝑛 ∈ ℤ (𝑚 · 𝑋) = (𝑛 · (𝑁𝑋))))
2926, 28syl5ibrcom 249 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) ∧ 𝑚 ∈ ℤ) → (𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3029rexlimdva 3286 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑚 ∈ ℤ 𝑦 = (𝑚 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3112, 30syl5bi 244 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐸) ∧ 𝑦𝐵) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
3231ralimdva 3179 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑋) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋))))
339, 32mpd 15 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))
341, 2, 3iscyggen2 19002 . . 3 (𝐺 ∈ Grp → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
3534adantr 483 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → ((𝑁𝑋) ∈ 𝐸 ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ∀𝑦𝐵𝑛 ∈ ℤ 𝑦 = (𝑛 · (𝑁𝑋)))))
368, 33, 35mpbir2and 711 1 ((𝐺 ∈ Grp ∧ 𝑋𝐸) → (𝑁𝑋) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  cmpt 5148  ran crn 5558  cfv 6357  (class class class)co 7158  -cneg 10873  cz 11984  Basecbs 16485  Grpcgrp 18105  invgcminusg 18106  .gcmg 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-mulg 18227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator