MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggenod Structured version   Visualization version   GIF version

Theorem cyggenod 18997
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggenod.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
cyggenod ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑂   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)   𝑂(𝑥)

Proof of Theorem cyggenod
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
3 iscyg3.e . . 3 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen 18993 . 2 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
5 simplr 767 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → 𝐵 ∈ Fin)
6 simplll 773 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 487 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
8 simplr 767 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋𝐵)
91, 2mulgcl 18239 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
106, 7, 8, 9syl3anc 1367 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵)
1110fmpttd 6874 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵)
1211frnd 6516 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵)
135, 12ssfid 8735 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin)
14 hashen 13701 . . . . 5 ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
1513, 5, 14syl2anc 586 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
16 cyggenod.o . . . . . . . 8 𝑂 = (od‘𝐺)
17 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))
181, 16, 2, 17dfod2 18685 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
1918adantlr 713 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
2013iftrued 4475 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
2119, 20eqtr2d 2857 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂𝑋))
2221eqeq1d 2823 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((♯‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (♯‘𝐵) ↔ (𝑂𝑋) = (♯‘𝐵)))
23 fisseneq 8723 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)
24233expia 1117 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
25 enrefg 8535 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
2625adantr 483 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵𝐵)
27 breq1 5062 . . . . . . 7 (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵𝐵𝐵))
2826, 27syl5ibrcom 249 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
2924, 28impbid 214 . . . . 5 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
305, 12, 29syl2anc 586 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3115, 22, 303bitr3rd 312 . . 3 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂𝑋) = (♯‘𝐵)))
3231pm5.32da 581 . 2 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
334, 32syl5bb 285 1 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (♯‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {crab 3142  wss 3936  ifcif 4467   class class class wbr 5059  cmpt 5139  ran crn 5551  cfv 6350  (class class class)co 7150  cen 8500  Fincfn 8503  0cc0 10531  cz 11975  chash 13684  Basecbs 16477  Grpcgrp 18097  .gcmg 18218  odcod 18646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-od 18650
This theorem is referenced by:  iscygodd  19001  cyggexb  19013
  Copyright terms: Public domain W3C validator