MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggenod Structured version   Visualization version   GIF version

Theorem cyggenod 18332
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1 𝐵 = (Base‘𝐺)
iscyg.2 · = (.g𝐺)
iscyg3.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cyggenod.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
cyggenod ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (#‘𝐵))))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑛,𝑂   𝑛,𝑋,𝑥   𝑛,𝐺,𝑥   · ,𝑛,𝑥
Allowed substitution hints:   𝐸(𝑥,𝑛)   𝑂(𝑥)

Proof of Theorem cyggenod
StepHypRef Expression
1 iscyg.1 . . 3 𝐵 = (Base‘𝐺)
2 iscyg.2 . . 3 · = (.g𝐺)
3 iscyg3.e . . 3 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
41, 2, 3iscyggen 18328 . 2 (𝑋𝐸 ↔ (𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
5 simplr 807 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → 𝐵 ∈ Fin)
6 simplll 813 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝐺 ∈ Grp)
7 simpr 476 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
8 simplr 807 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → 𝑋𝐵)
91, 2mulgcl 17606 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
106, 7, 8, 9syl3anc 1366 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝑋) ∈ 𝐵)
11 eqid 2651 . . . . . . . 8 (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))
1210, 11fmptd 6425 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵)
13 frn 6091 . . . . . . 7 ((𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)):ℤ⟶𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵)
1412, 13syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵)
15 ssfi 8221 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin)
165, 14, 15syl2anc 694 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin)
17 hashen 13175 . . . . 5 ((ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (#‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
1816, 5, 17syl2anc 694 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (#‘𝐵) ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
19 cyggenod.o . . . . . . . 8 𝑂 = (od‘𝐺)
201, 19, 2, 11dfod2 18027 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
2120adantlr 751 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (𝑂𝑋) = if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0))
2216iftrued 4127 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → if(ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ∈ Fin, (#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))), 0) = (#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))))
2321, 22eqtr2d 2686 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (𝑂𝑋))
2423eqeq1d 2653 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → ((#‘ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋))) = (#‘𝐵) ↔ (𝑂𝑋) = (#‘𝐵)))
25 fisseneq 8212 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵) → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵)
26253expia 1286 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
27 enrefg 8029 . . . . . . . 8 (𝐵 ∈ Fin → 𝐵𝐵)
2827adantr 480 . . . . . . 7 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → 𝐵𝐵)
29 breq1 4688 . . . . . . 7 (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵𝐵𝐵))
3028, 29syl5ibrcom 237 . . . . . 6 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 → ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵))
3126, 30impbid 202 . . . . 5 ((𝐵 ∈ Fin ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ⊆ 𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
325, 14, 31syl2anc 694 . . . 4 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) ≈ 𝐵 ↔ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵))
3318, 24, 323bitr3rd 299 . . 3 (((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) ∧ 𝑋𝐵) → (ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵 ↔ (𝑂𝑋) = (#‘𝐵)))
3433pm5.32da 674 . 2 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → ((𝑋𝐵 ∧ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑋)) = 𝐵) ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (#‘𝐵))))
354, 34syl5bb 272 1 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → (𝑋𝐸 ↔ (𝑋𝐵 ∧ (𝑂𝑋) = (#‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {crab 2945  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  cen 7994  Fincfn 7997  0cc0 9974  cz 11415  #chash 13157  Basecbs 15904  Grpcgrp 17469  .gcmg 17587  odcod 17990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-od 17994
This theorem is referenced by:  iscygodd  18336  cyggexb  18346
  Copyright terms: Public domain W3C validator