MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem2 Structured version   Visualization version   GIF version

Theorem cygznlem2 19857
Description: Lemma for cygzn 19859. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
cygzn.b 𝐵 = (Base‘𝐺)
cygzn.n 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0)
cygzn.y 𝑌 = (ℤ/nℤ‘𝑁)
cygzn.m · = (.g𝐺)
cygzn.l 𝐿 = (ℤRHom‘𝑌)
cygzn.e 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
cygzn.g (𝜑𝐺 ∈ CycGrp)
cygzn.x (𝜑𝑋𝐸)
cygzn.f 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
Assertion
Ref Expression
cygznlem2 ((𝜑𝑀 ∈ ℤ) → (𝐹‘(𝐿𝑀)) = (𝑀 · 𝑋))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐵   𝑚,𝐺,𝑛,𝑥   𝑚,𝑀   · ,𝑚,𝑛,𝑥   𝑚,𝑌,𝑛,𝑥   𝑚,𝐿,𝑛,𝑥   𝑥,𝑁   𝜑,𝑚   𝑛,𝐹,𝑥   𝑚,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚)   𝑀(𝑥,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem cygznlem2
StepHypRef Expression
1 cygzn.f . 2 𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)
2 fvexd 6170 . 2 ((𝜑𝑚 ∈ ℤ) → (𝐿𝑚) ∈ V)
3 ovexd 6645 . 2 ((𝜑𝑚 ∈ ℤ) → (𝑚 · 𝑋) ∈ V)
4 fveq2 6158 . 2 (𝑚 = 𝑀 → (𝐿𝑚) = (𝐿𝑀))
5 oveq1 6622 . 2 (𝑚 = 𝑀 → (𝑚 · 𝑋) = (𝑀 · 𝑋))
6 cygzn.b . . . 4 𝐵 = (Base‘𝐺)
7 cygzn.n . . . 4 𝑁 = if(𝐵 ∈ Fin, (#‘𝐵), 0)
8 cygzn.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
9 cygzn.m . . . 4 · = (.g𝐺)
10 cygzn.l . . . 4 𝐿 = (ℤRHom‘𝑌)
11 cygzn.e . . . 4 𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}
12 cygzn.g . . . 4 (𝜑𝐺 ∈ CycGrp)
13 cygzn.x . . . 4 (𝜑𝑋𝐸)
146, 7, 8, 9, 10, 11, 12, 13, 1cygznlem2a 19856 . . 3 (𝜑𝐹:(Base‘𝑌)⟶𝐵)
15 ffun 6015 . . 3 (𝐹:(Base‘𝑌)⟶𝐵 → Fun 𝐹)
1614, 15syl 17 . 2 (𝜑 → Fun 𝐹)
171, 2, 3, 4, 5, 16fliftval 6531 1 ((𝜑𝑀 ∈ ℤ) → (𝐹‘(𝐿𝑀)) = (𝑀 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2912  Vcvv 3190  ifcif 4064  cop 4161  cmpt 4683  ran crn 5085  Fun wfun 5851  wf 5853  cfv 5857  (class class class)co 6615  Fincfn 7915  0cc0 9896  cz 11337  #chash 13073  Basecbs 15800  .gcmg 17480  CycGrpccyg 18219  ℤRHomczrh 19788  ℤ/nczn 19791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-fz 12285  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-nsg 17532  df-eqg 17533  df-ghm 17598  df-od 17888  df-cmn 18135  df-abl 18136  df-cyg 18220  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-rnghom 18655  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-cnfld 19687  df-zring 19759  df-zrh 19792  df-zn 19795
This theorem is referenced by:  cygznlem3  19858
  Copyright terms: Public domain W3C validator