MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   GIF version

Theorem d1mat2pmat 21341
Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
d1mat2pmat.b 𝐵 = (Base‘(𝑁 Mat 𝑅))
d1mat2pmat.p 𝑃 = (Poly1𝑅)
d1mat2pmat.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
d1mat2pmat ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})

Proof of Theorem d1mat2pmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8588 . . . . . 6 {𝐴} ∈ Fin
2 eleq1 2900 . . . . . 6 (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin))
31, 2mpbiri 260 . . . . 5 (𝑁 = {𝐴} → 𝑁 ∈ Fin)
43adantr 483 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → 𝑁 ∈ Fin)
543ad2ant2 1130 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simp1 1132 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑅𝑉)
7 simp3 1134 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
8 d1mat2pmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
9 eqid 2821 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
10 d1mat2pmat.b . . . 4 𝐵 = (Base‘(𝑁 Mat 𝑅))
11 d1mat2pmat.p . . . 4 𝑃 = (Poly1𝑅)
12 d1mat2pmat.s . . . 4 𝑆 = (algSc‘𝑃)
138, 9, 10, 11, 12mat2pmatval 21326 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
145, 6, 7, 13syl3anc 1367 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
15 id 22 . . . . . . 7 (𝐴𝑉𝐴𝑉)
16 fvexd 6680 . . . . . . 7 (𝐴𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V)
1715, 15, 163jca 1124 . . . . . 6 (𝐴𝑉 → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
1817adantl 484 . . . . 5 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
19183ad2ant2 1130 . . . 4 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
20 eqid 2821 . . . . 5 (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))
21 fvoveq1 7173 . . . . 5 (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗)))
22 oveq2 7158 . . . . . 6 (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴))
2322fveq2d 6669 . . . . 5 (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴)))
2420, 21, 23mposn 7792 . . . 4 ((𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
2519, 24syl 17 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
26 mpoeq12 7221 . . . . . . 7 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))))
2726eqeq1d 2823 . . . . . 6 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2827anidms 569 . . . . 5 (𝑁 = {𝐴} → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2928adantr 483 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
30293ad2ant2 1130 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3125, 30mpbird 259 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
3214, 31eqtrd 2856 1 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  {csn 4561  cop 4567  cfv 6350  (class class class)co 7150  cmpo 7152  Fincfn 8503  Basecbs 16477  algSccascl 20078  Poly1cpl1 20339   Mat cmat 21010   matToPolyMat cmat2pmat 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-1o 8096  df-en 8504  df-fin 8507  df-mat2pmat 21309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator