Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem4 Structured version   Visualization version   GIF version

Theorem dalawlem4 37012
Description: Lemma for dalaw 37024. Second piece of dalawlem5 37013. (Contributed by NM, 4-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem4
StepHypRef Expression
1 simp11 1199 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
2 simp12 1200 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄))
31hllatd 36502 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
4 simp22 1203 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
5 simp32 1206 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
6 eqid 2823 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 dalawlem.j . . . . . . 7 = (join‘𝐾)
8 dalawlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
101, 4, 5, 9syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
11 simp21 1202 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
12 simp31 1205 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
136, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
141, 11, 12, 13syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
15 dalawlem.m . . . . . 6 = (meet‘𝐾)
166, 15latmcom 17687 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
173, 10, 14, 16syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
187, 8hlatjcom 36506 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴) → (𝑄 𝑃) = (𝑃 𝑄))
191, 4, 11, 18syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑃) = (𝑃 𝑄))
202, 17, 193brtr4d 5100 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑃))
21 simp13 1201 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
2217, 21eqbrtrd 5090 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈))
23 simp23 1204 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
24 simp33 1207 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
25 dalawlem.l . . . 4 = (le‘𝐾)
2625, 7, 15, 8dalawlem3 37011 . . 3 (((𝐾 ∈ HL ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑃) ∧ ((𝑄 𝑇) (𝑃 𝑆)) (𝑅 𝑈)) ∧ (𝑄𝐴𝑃𝐴𝑅𝐴) ∧ (𝑇𝐴𝑆𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) 𝑇) (((𝑃 𝑅) (𝑆 𝑈)) ((𝑅 𝑄) (𝑈 𝑇))))
271, 20, 22, 4, 11, 23, 5, 12, 24, 26syl333anc 1398 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) 𝑇) (((𝑃 𝑅) (𝑆 𝑈)) ((𝑅 𝑄) (𝑈 𝑇))))
287, 8hlatjcom 36506 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
291, 11, 23, 28syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
307, 8hlatjcom 36506 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑈𝐴) → (𝑆 𝑈) = (𝑈 𝑆))
311, 12, 24, 30syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆 𝑈) = (𝑈 𝑆))
3229, 31oveq12d 7176 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑅) (𝑆 𝑈)) = ((𝑅 𝑃) (𝑈 𝑆)))
337, 8hlatjcom 36506 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴) → (𝑅 𝑄) = (𝑄 𝑅))
341, 23, 4, 33syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑄) = (𝑄 𝑅))
357, 8hlatjcom 36506 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑇𝐴) → (𝑈 𝑇) = (𝑇 𝑈))
361, 24, 5, 35syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑇) = (𝑇 𝑈))
3734, 36oveq12d 7176 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑄) (𝑈 𝑇)) = ((𝑄 𝑅) (𝑇 𝑈)))
3832, 37oveq12d 7176 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑅) (𝑆 𝑈)) ((𝑅 𝑄) (𝑈 𝑇))) = (((𝑅 𝑃) (𝑈 𝑆)) ((𝑄 𝑅) (𝑇 𝑈))))
396, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
401, 23, 11, 39syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
416, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
421, 24, 12, 41syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
436, 15latmcl 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
443, 40, 42, 43syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
456, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
461, 4, 23, 45syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
476, 7, 8hlatjcl 36505 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
481, 5, 24, 47syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
496, 15latmcl 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
503, 46, 48, 49syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
516, 7latjcom 17671 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾) ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾)) → (((𝑅 𝑃) (𝑈 𝑆)) ((𝑄 𝑅) (𝑇 𝑈))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
523, 44, 50, 51syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑅 𝑃) (𝑈 𝑆)) ((𝑄 𝑅) (𝑇 𝑈))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
5338, 52eqtrd 2858 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑅) (𝑆 𝑈)) ((𝑅 𝑄) (𝑈 𝑇))) = (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
5427, 53breqtrd 5094 1 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  Latclat 17657  Atomscatm 36401  HLchlt 36488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-psubsp 36641  df-pmap 36642  df-padd 36934
This theorem is referenced by:  dalawlem5  37013
  Copyright terms: Public domain W3C validator