![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem15 | Structured version Visualization version GIF version |
Description: Lemma for dath 35525. The axis of perspectivity 𝑋 is a line. (Contributed by NM, 21-Jul-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem15.m | ⊢ ∧ = (meet‘𝐾) |
dalem15.n | ⊢ 𝑁 = (LLines‘𝐾) |
dalem15.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem15.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem15.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem15.x | ⊢ 𝑋 = (𝑌 ∧ 𝑍) |
Ref | Expression |
---|---|
dalem15 | ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem15.x | . 2 ⊢ 𝑋 = (𝑌 ∧ 𝑍) | |
2 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
3 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | dalem15.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
7 | eqid 2760 | . . . 4 ⊢ (LVols‘𝐾) = (LVols‘𝐾) | |
8 | dalem15.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem15.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | eqid 2760 | . . . 4 ⊢ (𝑌 ∨ 𝐶) = (𝑌 ∨ 𝐶) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem14 35466 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾)) |
12 | 2 | dalemkehl 35412 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | 2 | dalemyeo 35421 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑂) |
14 | 2 | dalemzeo 35422 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑂) |
15 | dalem15.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
16 | dalem15.n | . . . . . 6 ⊢ 𝑁 = (LLines‘𝐾) | |
17 | 4, 15, 16, 6, 7 | 2lplnmj 35411 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
18 | 12, 13, 14, 17 | syl3anc 1477 | . . . 4 ⊢ (𝜑 → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
19 | 18 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → ((𝑌 ∧ 𝑍) ∈ 𝑁 ↔ (𝑌 ∨ 𝑍) ∈ (LVols‘𝐾))) |
20 | 11, 19 | mpbird 247 | . 2 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → (𝑌 ∧ 𝑍) ∈ 𝑁) |
21 | 1, 20 | syl5eqel 2843 | 1 ⊢ ((𝜑 ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 joincjn 17145 meetcmee 17146 Atomscatm 35053 HLchlt 35140 LLinesclln 35280 LPlanesclpl 35281 LVolsclvol 35282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-preset 17129 df-poset 17147 df-plt 17159 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-p0 17240 df-lat 17247 df-clat 17309 df-oposet 34966 df-ol 34968 df-oml 34969 df-covers 35056 df-ats 35057 df-atl 35088 df-cvlat 35112 df-hlat 35141 df-llines 35287 df-lplanes 35288 df-lvols 35289 |
This theorem is referenced by: dalem16 35468 dalem53 35514 |
Copyright terms: Public domain | W3C validator |