Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem21 Structured version   Visualization version   GIF version

Theorem dalem21 36712
Description: Lemma for dath 36754. Show that lines 𝑐𝑑 and 𝑃𝑆 intersect at an atom. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem21.m = (meet‘𝐾)
dalem21.o 𝑂 = (LPlanes‘𝐾)
dalem21.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem21.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem21 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)

Proof of Theorem dalem21
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36641 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1125 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
81, 4, 5, 6, 7dalemcjden 36710 . . 3 ((𝜑𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
983adant2 1123 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ∈ (LLines‘𝐾))
10 dalem21.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem21.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
121, 4, 5, 6, 10, 11dalempjsen 36671 . . 3 (𝜑 → (𝑃 𝑆) ∈ (LLines‘𝐾))
13123ad2ant1 1125 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ∈ (LLines‘𝐾))
141, 4, 5, 6, 10, 11dalemply 36672 . . . . . . 7 (𝜑𝑃 𝑌)
1514adantr 481 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑃 𝑌)
16 dalem21.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
171, 4, 5, 6, 16dalemsly 36673 . . . . . 6 ((𝜑𝑌 = 𝑍) → 𝑆 𝑌)
181dalemkelat 36642 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
191, 6dalempeb 36657 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
201, 6dalemseb 36660 . . . . . . . 8 (𝜑𝑆 ∈ (Base‘𝐾))
211, 10dalemyeb 36667 . . . . . . . 8 (𝜑𝑌 ∈ (Base‘𝐾))
22 eqid 2821 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4, 5latjle12 17662 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2418, 19, 20, 21, 23syl13anc 1364 . . . . . . 7 (𝜑 → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2524adantr 481 . . . . . 6 ((𝜑𝑌 = 𝑍) → ((𝑃 𝑌𝑆 𝑌) ↔ (𝑃 𝑆) 𝑌))
2615, 17, 25mpbi2and 708 . . . . 5 ((𝜑𝑌 = 𝑍) → (𝑃 𝑆) 𝑌)
27263adant3 1124 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) 𝑌)
287dalem-ccly 36703 . . . . . . 7 (𝜓 → ¬ 𝑐 𝑌)
2928adantl 482 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 𝑌)
3018adantr 481 . . . . . . . 8 ((𝜑𝜓) → 𝐾 ∈ Lat)
317, 6dalemcceb 36707 . . . . . . . . 9 (𝜓𝑐 ∈ (Base‘𝐾))
3231adantl 482 . . . . . . . 8 ((𝜑𝜓) → 𝑐 ∈ (Base‘𝐾))
337dalemddea 36702 . . . . . . . . . 10 (𝜓𝑑𝐴)
3422, 6atbase 36307 . . . . . . . . . 10 (𝑑𝐴𝑑 ∈ (Base‘𝐾))
3533, 34syl 17 . . . . . . . . 9 (𝜓𝑑 ∈ (Base‘𝐾))
3635adantl 482 . . . . . . . 8 ((𝜑𝜓) → 𝑑 ∈ (Base‘𝐾))
3722, 4, 5latlej1 17660 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ 𝑑 ∈ (Base‘𝐾)) → 𝑐 (𝑐 𝑑))
3830, 32, 36, 37syl3anc 1363 . . . . . . 7 ((𝜑𝜓) → 𝑐 (𝑐 𝑑))
39 eqid 2821 . . . . . . . . . 10 (LLines‘𝐾) = (LLines‘𝐾)
4022, 39llnbase 36527 . . . . . . . . 9 ((𝑐 𝑑) ∈ (LLines‘𝐾) → (𝑐 𝑑) ∈ (Base‘𝐾))
418, 40syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑐 𝑑) ∈ (Base‘𝐾))
4221adantr 481 . . . . . . . 8 ((𝜑𝜓) → 𝑌 ∈ (Base‘𝐾))
4322, 4lattr 17656 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4430, 32, 41, 42, 43syl13anc 1364 . . . . . . 7 ((𝜑𝜓) → ((𝑐 (𝑐 𝑑) ∧ (𝑐 𝑑) 𝑌) → 𝑐 𝑌))
4538, 44mpand 691 . . . . . 6 ((𝜑𝜓) → ((𝑐 𝑑) 𝑌𝑐 𝑌))
4629, 45mtod 199 . . . . 5 ((𝜑𝜓) → ¬ (𝑐 𝑑) 𝑌)
47463adant2 1123 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝑐 𝑑) 𝑌)
48 nbrne2 5078 . . . 4 (((𝑃 𝑆) 𝑌 ∧ ¬ (𝑐 𝑑) 𝑌) → (𝑃 𝑆) ≠ (𝑐 𝑑))
4927, 47, 48syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑆) ≠ (𝑐 𝑑))
5049necomd 3071 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) ≠ (𝑃 𝑆))
51 hlatl 36378 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
522, 51syl 17 . . . . 5 (𝜑𝐾 ∈ AtLat)
5352adantr 481 . . . 4 ((𝜑𝜓) → 𝐾 ∈ AtLat)
541dalempea 36644 . . . . . . 7 (𝜑𝑃𝐴)
551dalemsea 36647 . . . . . . 7 (𝜑𝑆𝐴)
5622, 5, 6hlatjcl 36385 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
572, 54, 55, 56syl3anc 1363 . . . . . 6 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
5857adantr 481 . . . . 5 ((𝜑𝜓) → (𝑃 𝑆) ∈ (Base‘𝐾))
59 dalem21.m . . . . . 6 = (meet‘𝐾)
6022, 59latmcl 17652 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
6130, 41, 58, 60syl3anc 1363 . . . 4 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾))
621, 4, 5, 6, 10, 11dalemcea 36678 . . . . 5 (𝜑𝐶𝐴)
6362adantr 481 . . . 4 ((𝜑𝜓) → 𝐶𝐴)
647dalemclccjdd 36706 . . . . . 6 (𝜓𝐶 (𝑐 𝑑))
6564adantl 482 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
661dalemclpjs 36652 . . . . . 6 (𝜑𝐶 (𝑃 𝑆))
6766adantr 481 . . . . 5 ((𝜑𝜓) → 𝐶 (𝑃 𝑆))
681, 6dalemceb 36656 . . . . . . 7 (𝜑𝐶 ∈ (Base‘𝐾))
6968adantr 481 . . . . . 6 ((𝜑𝜓) → 𝐶 ∈ (Base‘𝐾))
7022, 4, 59latlem12 17678 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑐 𝑑) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7130, 69, 41, 58, 70syl13anc 1364 . . . . 5 ((𝜑𝜓) → ((𝐶 (𝑐 𝑑) ∧ 𝐶 (𝑃 𝑆)) ↔ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))))
7265, 67, 71mpbi2and 708 . . . 4 ((𝜑𝜓) → 𝐶 ((𝑐 𝑑) (𝑃 𝑆)))
73 eqid 2821 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7422, 4, 73, 6atlen0 36328 . . . 4 (((𝐾 ∈ AtLat ∧ ((𝑐 𝑑) (𝑃 𝑆)) ∈ (Base‘𝐾) ∧ 𝐶𝐴) ∧ 𝐶 ((𝑐 𝑑) (𝑃 𝑆))) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7553, 61, 63, 72, 74syl31anc 1365 . . 3 ((𝜑𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
76753adant2 1123 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))
7759, 73, 6, 392llnmat 36542 . 2 (((𝐾 ∈ HL ∧ (𝑐 𝑑) ∈ (LLines‘𝐾) ∧ (𝑃 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑐 𝑑) ≠ (𝑃 𝑆) ∧ ((𝑐 𝑑) (𝑃 𝑆)) ≠ (0.‘𝐾))) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
783, 9, 13, 50, 76, 77syl32anc 1370 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑑) (𝑃 𝑆)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  joincjn 17544  meetcmee 17545  0.cp0 17637  Latclat 17645  Atomscatm 36281  AtLatcal 36282  HLchlt 36368  LLinesclln 36509  LPlanesclpl 36510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-llines 36516  df-lplanes 36517
This theorem is referenced by:  dalem22  36713
  Copyright terms: Public domain W3C validator