Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem4 Structured version   Visualization version   GIF version

Theorem dalem4 34470
 Description: Lemma for dalemdnee 34471. (Contributed by NM, 10-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem3.m = (meet‘𝐾)
dalem3.o 𝑂 = (LPlanes‘𝐾)
dalem3.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem3.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem3.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dalem3.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem4 ((𝜑𝐷𝑇) → 𝐷𝐸)

Proof of Theorem dalem4
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . . 5 = (le‘𝐾)
3 dalemc.j . . . . 5 = (join‘𝐾)
4 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 34461 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
65adantr 481 . . 3 ((𝜑𝐷𝑇) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 dalem3.d . . . . . 6 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
81dalemkelat 34429 . . . . . . 7 (𝜑𝐾 ∈ Lat)
91, 3, 4dalempjqeb 34450 . . . . . . 7 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
101, 3, 4dalemsjteb 34451 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
11 eqid 2621 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
12 dalem3.m . . . . . . . 8 = (meet‘𝐾)
1311, 12latmcom 17015 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑆 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
148, 9, 10, 13syl3anc 1323 . . . . . 6 (𝜑 → ((𝑃 𝑄) (𝑆 𝑇)) = ((𝑆 𝑇) (𝑃 𝑄)))
157, 14syl5eq 2667 . . . . 5 (𝜑𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
1615neeq1d 2849 . . . 4 (𝜑 → (𝐷𝑇 ↔ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇))
1716biimpa 501 . . 3 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇)
18 biid 251 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
19 dalem3.o . . . 4 𝑂 = (LPlanes‘𝐾)
20 dalem3.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
21 dalem3.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
22 eqid 2621 . . . 4 ((𝑆 𝑇) (𝑃 𝑄)) = ((𝑆 𝑇) (𝑃 𝑄))
23 eqid 2621 . . . 4 ((𝑇 𝑈) (𝑄 𝑅)) = ((𝑇 𝑈) (𝑄 𝑅))
2418, 2, 3, 4, 12, 19, 20, 21, 22, 23dalem3 34469 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ ((𝑆 𝑇) (𝑃 𝑄)) ≠ 𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
256, 17, 24syl2anc 692 . 2 ((𝜑𝐷𝑇) → ((𝑆 𝑇) (𝑃 𝑄)) ≠ ((𝑇 𝑈) (𝑄 𝑅)))
2615adantr 481 . 2 ((𝜑𝐷𝑇) → 𝐷 = ((𝑆 𝑇) (𝑃 𝑄)))
27 dalem3.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
281dalemkehl 34428 . . . . . 6 (𝜑𝐾 ∈ HL)
291dalemqea 34432 . . . . . 6 (𝜑𝑄𝐴)
301dalemrea 34433 . . . . . 6 (𝜑𝑅𝐴)
3111, 3, 4hlatjcl 34172 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3228, 29, 30, 31syl3anc 1323 . . . . 5 (𝜑 → (𝑄 𝑅) ∈ (Base‘𝐾))
331, 3, 4dalemtjueb 34452 . . . . 5 (𝜑 → (𝑇 𝑈) ∈ (Base‘𝐾))
3411, 12latmcom 17015 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
358, 32, 33, 34syl3anc 1323 . . . 4 (𝜑 → ((𝑄 𝑅) (𝑇 𝑈)) = ((𝑇 𝑈) (𝑄 𝑅)))
3627, 35syl5eq 2667 . . 3 (𝜑𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3736adantr 481 . 2 ((𝜑𝐷𝑇) → 𝐸 = ((𝑇 𝑈) (𝑄 𝑅)))
3825, 26, 373netr4d 2867 1 ((𝜑𝐷𝑇) → 𝐷𝐸)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4623  ‘cfv 5857  (class class class)co 6615  Basecbs 15800  lecple 15888  joincjn 16884  meetcmee 16885  Latclat 16985  Atomscatm 34069  HLchlt 34156  LPlanesclpl 34297 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304 This theorem is referenced by:  dalemdnee  34471
 Copyright terms: Public domain W3C validator