Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Visualization version   GIF version

Theorem dalem44 36844
Description: Lemma for dath 36864. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem44 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem44.m . . . 4 = (meet‘𝐾)
7 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 36843 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
1413necomd 3069 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ≠ ((𝐺 𝐻) 𝐼))
151dalemkelat 36752 . . . . . . 7 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1128 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
175, 4dalemcceb 36817 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
18173ad2ant3 1130 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 36842 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
20 eqid 2819 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7lplnbase 36662 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2320, 2, 3latleeqj1 17665 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
2416, 18, 22, 23syl3anc 1366 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 36828 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
261dalemkehl 36751 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
27263ad2ant1 1128 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
285dalemccea 36811 . . . . . . . . . . . . . 14 (𝜓𝑐𝐴)
29283ad2ant3 1130 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 36824 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
313, 4hlatjcom 36496 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) = (𝐺 𝑐))
3227, 29, 30, 31syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) = (𝐺 𝑐))
3325, 32breqtrrd 5085 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝑐 𝐺))
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 36833 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 36829 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
363, 4hlatjcom 36496 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) = (𝐻 𝑐))
3727, 29, 35, 36syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) = (𝐻 𝑐))
3834, 37breqtrrd 5085 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝑐 𝐻))
391, 4dalempeb 36767 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (Base‘𝐾))
40393ad2ant1 1128 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
4120, 3, 4hlatjcl 36495 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) ∈ (Base‘𝐾))
4227, 29, 30, 41syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) ∈ (Base‘𝐾))
431, 4dalemqeb 36768 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (Base‘𝐾))
44433ad2ant1 1128 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
4520, 3, 4hlatjcl 36495 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) ∈ (Base‘𝐾))
4627, 29, 35, 45syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) ∈ (Base‘𝐾))
4720, 2, 3latjlej12 17669 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑐 𝐺) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑐 𝐻) ∈ (Base‘𝐾))) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4816, 40, 42, 44, 46, 47syl122anc 1374 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4933, 38, 48mp2and 697 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻)))
5020, 4atbase 36417 . . . . . . . . . . . 12 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
5130, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
5220, 4atbase 36417 . . . . . . . . . . . 12 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5335, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5420, 3latjjdi 17705 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾))) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5516, 18, 51, 53, 54syl13anc 1367 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5649, 55breqtrrd 5085 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) (𝑐 (𝐺 𝐻)))
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 36837 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 36834 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
593, 4hlatjcom 36496 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) = (𝐼 𝑐))
6027, 29, 58, 59syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) = (𝐼 𝑐))
6157, 60breqtrrd 5085 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝑐 𝐼))
621, 3, 4dalempjqeb 36773 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6420, 3, 4hlatjcl 36495 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
6527, 30, 35, 64syl3anc 1366 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
6620, 3latjcl 17653 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾)) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
6716, 18, 65, 66syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
681, 4dalemreb 36769 . . . . . . . . . . 11 (𝜑𝑅 ∈ (Base‘𝐾))
69683ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
7020, 3, 4hlatjcl 36495 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) ∈ (Base‘𝐾))
7127, 29, 58, 70syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) ∈ (Base‘𝐾))
7220, 2, 3latjlej12 17669 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑐 𝐼) ∈ (Base‘𝐾))) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7316, 63, 67, 69, 71, 72syl122anc 1374 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7456, 61, 73mp2and 697 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7520, 4atbase 36417 . . . . . . . . . 10 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
7658, 75syl 17 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
7720, 3latjjdi 17705 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾))) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7816, 18, 65, 76, 77syl13anc 1367 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7974, 78breqtrrd 5085 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (𝑐 ((𝐺 𝐻) 𝐼)))
808, 79eqbrtrid 5092 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (𝑐 ((𝐺 𝐻) 𝐼)))
81 breq2 5061 . . . . . 6 ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → (𝑌 (𝑐 ((𝐺 𝐻) 𝐼)) ↔ 𝑌 ((𝐺 𝐻) 𝐼)))
8280, 81syl5ibcom 247 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
8324, 82sylbid 242 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
841dalemyeo 36760 . . . . . 6 (𝜑𝑌𝑂)
85843ad2ant1 1128 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
862, 7lplncmp 36690 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ((𝐺 𝐻) 𝐼) ∈ 𝑂) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8727, 85, 19, 86syl3anc 1366 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8883, 87sylibd 241 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 = ((𝐺 𝐻) 𝐼)))
8988necon3ad 3027 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ≠ ((𝐺 𝐻) 𝐼) → ¬ 𝑐 ((𝐺 𝐻) 𝐼)))
9014, 89mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36391  HLchlt 36478  LPlanesclpl 36620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-llines 36626  df-lplanes 36627  df-lvols 36628
This theorem is referenced by:  dalem45  36845
  Copyright terms: Public domain W3C validator