Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem5 Structured version   Visualization version   GIF version

Theorem dalem5 35474
 Description: Lemma for dath 35543. Atom 𝑈 (in plane 𝑍 = 𝑆𝑇𝑈) belongs to the 3-dimensional volume formed by 𝑌 and 𝐶. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem5.o 𝑂 = (LPlanes‘𝐾)
dalem5.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem5.w 𝑊 = (𝑌 𝐶)
Assertion
Ref Expression
dalem5 (𝜑𝑈 𝑊)

Proof of Theorem dalem5
StepHypRef Expression
1 eqid 2760 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalemc.l . 2 = (le‘𝐾)
3 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkelat 35431 . 2 (𝜑𝐾 ∈ Lat)
5 dalemc.a . . 3 𝐴 = (Atoms‘𝐾)
63, 5dalemueb 35451 . 2 (𝜑𝑈 ∈ (Base‘𝐾))
73dalemkehl 35430 . . 3 (𝜑𝐾 ∈ HL)
83dalemrea 35435 . . 3 (𝜑𝑅𝐴)
9 dalemc.j . . . 4 = (join‘𝐾)
10 dalem5.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem5.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
123, 2, 9, 5, 10, 11dalemcea 35467 . . 3 (𝜑𝐶𝐴)
131, 9, 5hlatjcl 35174 . . 3 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐶𝐴) → (𝑅 𝐶) ∈ (Base‘𝐾))
147, 8, 12, 13syl3anc 1477 . 2 (𝜑 → (𝑅 𝐶) ∈ (Base‘𝐾))
15 dalem5.w . . 3 𝑊 = (𝑌 𝐶)
163, 10dalemyeb 35456 . . . 4 (𝜑𝑌 ∈ (Base‘𝐾))
173, 5dalemceb 35445 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
181, 9latjcl 17272 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → (𝑌 𝐶) ∈ (Base‘𝐾))
194, 16, 17, 18syl3anc 1477 . . 3 (𝜑 → (𝑌 𝐶) ∈ (Base‘𝐾))
2015, 19syl5eqel 2843 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
213dalemclrju 35443 . . 3 (𝜑𝐶 (𝑅 𝑈))
223dalemuea 35438 . . . 4 (𝜑𝑈𝐴)
233dalempea 35433 . . . . 5 (𝜑𝑃𝐴)
24 simp313 1407 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
253, 24sylbi 207 . . . . 5 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
262, 9, 5atnlej1 35186 . . . . 5 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
277, 12, 8, 23, 25, 26syl131anc 1490 . . . 4 (𝜑𝐶𝑅)
282, 9, 5hlatexch1 35202 . . . 4 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
297, 12, 22, 8, 27, 28syl131anc 1490 . . 3 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
3021, 29mpd 15 . 2 (𝜑𝑈 (𝑅 𝐶))
313, 9, 5dalempjqeb 35452 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
323, 5dalemreb 35448 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
331, 2, 9latlej2 17282 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
344, 31, 32, 33syl3anc 1477 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
3534, 11syl6breqr 4846 . . . 4 (𝜑𝑅 𝑌)
361, 2, 9latjlej1 17286 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
374, 32, 16, 17, 36syl13anc 1479 . . . 4 (𝜑 → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
3835, 37mpd 15 . . 3 (𝜑 → (𝑅 𝐶) (𝑌 𝐶))
3938, 15syl6breqr 4846 . 2 (𝜑 → (𝑅 𝐶) 𝑊)
401, 2, 4, 6, 14, 20, 30, 39lattrd 17279 1 (𝜑𝑈 𝑊)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  lecple 16170  joincjn 17165  Latclat 17266  Atomscatm 35071  HLchlt 35158  LPlanesclpl 35299 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-preset 17149  df-poset 17167  df-plt 17179  df-lub 17195  df-glb 17196  df-join 17197  df-meet 17198  df-p0 17260  df-lat 17267  df-clat 17329  df-oposet 34984  df-ol 34986  df-oml 34987  df-covers 35074  df-ats 35075  df-atl 35106  df-cvlat 35130  df-hlat 35159  df-llines 35305  df-lplanes 35306 This theorem is referenced by:  dalem6  35475  dalem8  35477
 Copyright terms: Public domain W3C validator