Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkelat Structured version   Visualization version   GIF version

Theorem dalemkelat 35431
Description: Lemma for dath 35543. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkelat (𝜑𝐾 ∈ Lat)

Proof of Theorem dalemkelat
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 35430 . 2 (𝜑𝐾 ∈ HL)
3 hllat 35171 . 2 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 1 (𝜑𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  Latclat 17266  HLchlt 35158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-dm 5276  df-iota 6012  df-fv 6057  df-ov 6817  df-atl 35106  df-cvlat 35130  df-hlat 35159
This theorem is referenced by:  dalemcnes  35457  dalempnes  35458  dalemqnet  35459  dalemply  35461  dalemsly  35462  dalem1  35466  dalemcea  35467  dalem3  35471  dalem4  35472  dalem5  35474  dalem8  35477  dalem-cly  35478  dalem10  35480  dalem13  35483  dalem16  35486  dalem17  35487  dalem21  35501  dalem25  35505  dalem27  35506  dalem38  35517  dalem39  35518  dalem43  35522  dalem44  35523  dalem45  35524  dalem48  35527  dalem54  35533  dalem55  35534  dalem56  35535  dalem57  35536  dalem60  35539
  Copyright terms: Public domain W3C validator