![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemply | Structured version Visualization version GIF version |
Description: Lemma for dath 35543. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalempnes.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalempnes.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemply | ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkelat 35431 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Lat) |
3 | dalemc.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 3 | dalempeb 35446 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
5 | 1 | dalemkehl 35430 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
6 | 1 | dalemqea 35434 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
7 | 1 | dalemrea 35435 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
8 | eqid 2760 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
9 | dalemc.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 8, 9, 3 | hlatjcl 35174 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
11 | 5, 6, 7, 10 | syl3anc 1477 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | dalemc.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
13 | 8, 12, 9 | latlej1 17281 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
14 | 2, 4, 11, 13 | syl3anc 1477 | . . 3 ⊢ (𝜑 → 𝑃 ≤ (𝑃 ∨ (𝑄 ∨ 𝑅))) |
15 | 1 | dalempea 35433 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
16 | 9, 3 | hlatjass 35177 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
17 | 5, 15, 6, 7, 16 | syl13anc 1479 | . . 3 ⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑅) = (𝑃 ∨ (𝑄 ∨ 𝑅))) |
18 | 14, 17 | breqtrrd 4832 | . 2 ⊢ (𝜑 → 𝑃 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | dalempnes.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
20 | 18, 19 | syl6breqr 4846 | 1 ⊢ (𝜑 → 𝑃 ≤ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 lecple 16170 joincjn 17165 Latclat 17266 Atomscatm 35071 HLchlt 35158 LPlanesclpl 35299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-preset 17149 df-poset 17167 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-lat 17267 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 |
This theorem is referenced by: dalem21 35501 dalem23 35503 dalem24 35504 dalem27 35506 |
Copyright terms: Public domain | W3C validator |