Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrot Structured version   Visualization version   GIF version

Theorem dalemrot 33760
Description: Lemma for dath 33839. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalemrot.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalemrot.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalemrot (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))

Proof of Theorem dalemrot
StepHypRef Expression
1 dalema.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 33726 . . . 4 (𝜑𝐾 ∈ HL)
3 dalemc.a . . . . 5 𝐴 = (Atoms‘𝐾)
41, 3dalemceb 33741 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
52, 4jca 552 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)))
61dalemqea 33730 . . . 4 (𝜑𝑄𝐴)
71dalemrea 33731 . . . 4 (𝜑𝑅𝐴)
81dalempea 33729 . . . 4 (𝜑𝑃𝐴)
96, 7, 83jca 1234 . . 3 (𝜑 → (𝑄𝐴𝑅𝐴𝑃𝐴))
101dalemtea 33733 . . . 4 (𝜑𝑇𝐴)
111dalemuea 33734 . . . 4 (𝜑𝑈𝐴)
121dalemsea 33732 . . . 4 (𝜑𝑆𝐴)
1310, 11, 123jca 1234 . . 3 (𝜑 → (𝑇𝐴𝑈𝐴𝑆𝐴))
145, 9, 133jca 1234 . 2 (𝜑 → ((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)))
15 dalemc.j . . . . 5 = (join‘𝐾)
161, 15, 3dalemqrprot 33751 . . . 4 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
17 dalemrot.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
181dalemyeo 33735 . . . . 5 (𝜑𝑌𝑂)
1917, 18syl5eqelr 2688 . . . 4 (𝜑 → ((𝑃 𝑄) 𝑅) ∈ 𝑂)
2016, 19eqeltrd 2683 . . 3 (𝜑 → ((𝑄 𝑅) 𝑃) ∈ 𝑂)
2115, 3hlatjrot 33476 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
222, 10, 11, 12, 21syl13anc 1319 . . . 4 (𝜑 → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
23 dalemrot.z . . . . 5 𝑍 = ((𝑆 𝑇) 𝑈)
241dalemzeo 33736 . . . . 5 (𝜑𝑍𝑂)
2523, 24syl5eqelr 2688 . . . 4 (𝜑 → ((𝑆 𝑇) 𝑈) ∈ 𝑂)
2622, 25eqeltrd 2683 . . 3 (𝜑 → ((𝑇 𝑈) 𝑆) ∈ 𝑂)
2720, 26jca 552 . 2 (𝜑 → (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂))
28 simp312 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑄 𝑅))
291, 28sylbi 205 . . . 4 (𝜑 → ¬ 𝐶 (𝑄 𝑅))
30 simp313 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
311, 30sylbi 205 . . . 4 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
321dalem-clpjq 33740 . . . 4 (𝜑 → ¬ 𝐶 (𝑃 𝑄))
3329, 31, 323jca 1234 . . 3 (𝜑 → (¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)))
34 simp322 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑇 𝑈))
351, 34sylbi 205 . . . 4 (𝜑 → ¬ 𝐶 (𝑇 𝑈))
36 simp323 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑈 𝑆))
371, 36sylbi 205 . . . 4 (𝜑 → ¬ 𝐶 (𝑈 𝑆))
38 simp321 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑆 𝑇))
391, 38sylbi 205 . . . 4 (𝜑 → ¬ 𝐶 (𝑆 𝑇))
4035, 37, 393jca 1234 . . 3 (𝜑 → (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)))
411dalemclqjt 33738 . . . 4 (𝜑𝐶 (𝑄 𝑇))
421dalemclrju 33739 . . . 4 (𝜑𝐶 (𝑅 𝑈))
431dalemclpjs 33737 . . . 4 (𝜑𝐶 (𝑃 𝑆))
4441, 42, 433jca 1234 . . 3 (𝜑 → (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))
4533, 40, 443jca 1234 . 2 (𝜑 → ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆))))
4614, 27, 453jca 1234 1 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1975   class class class wbr 4573  cfv 5786  (class class class)co 6523  Basecbs 15637  lecple 15717  joincjn 16709  Atomscatm 33367  HLchlt 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-preset 16693  df-poset 16711  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-lat 16811  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455
This theorem is referenced by:  dalemeea  33766  dalem6  33771  dalem7  33772  dalem11  33777  dalem12  33778  dalem29  33804  dalem30  33805  dalem31N  33806  dalem32  33807  dalem33  33808  dalem34  33809  dalem35  33810  dalem36  33811  dalem37  33812  dalem40  33815  dalem46  33821  dalem47  33822  dalem49  33824  dalem50  33825  dalem58  33833  dalem59  33834
  Copyright terms: Public domain W3C validator