Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1 Structured version   Visualization version   GIF version

Theorem dchr1 24889
 Description: Value of the principal Dirichlet character. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr1.g 𝐺 = (DChr‘𝑁)
dchr1.z 𝑍 = (ℤ/nℤ‘𝑁)
dchr1.o 1 = (0g𝐺)
dchr1.u 𝑈 = (Unit‘𝑍)
dchr1.n (𝜑𝑁 ∈ ℕ)
dchr1.a (𝜑𝐴𝑈)
Assertion
Ref Expression
dchr1 (𝜑 → ( 1𝐴) = 1)

Proof of Theorem dchr1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchr1.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2621 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 eqid 2621 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 dchr1.u . . . 4 𝑈 = (Unit‘𝑍)
6 eqid 2621 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))
7 dchr1.n . . . 4 (𝜑𝑁 ∈ ℕ)
81, 2, 3, 4, 5, 6, 7dchr1cl 24883 . . 3 (𝜑 → (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺))
9 eleq1 2686 . . . . . 6 (𝑘 = 𝑥 → (𝑘𝑈𝑥𝑈))
109ifbid 4082 . . . . 5 (𝑘 = 𝑥 → if(𝑘𝑈, 1, 0) = if(𝑥𝑈, 1, 0))
1110cbvmptv 4712 . . . 4 (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) = (𝑥 ∈ (Base‘𝑍) ↦ if(𝑥𝑈, 1, 0))
12 eqid 2621 . . . 4 (+g𝐺) = (+g𝐺)
131, 2, 3, 4, 5, 11, 12, 8dchrmulid2 24884 . . 3 (𝜑 → ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
141dchrabl 24886 . . . 4 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
15 ablgrp 18122 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
16 dchr1.o . . . . 5 1 = (0g𝐺)
173, 12, 16isgrpid2 17382 . . . 4 (𝐺 ∈ Grp → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
187, 14, 15, 174syl 19 . . 3 (𝜑 → (((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))(+g𝐺)(𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))) ↔ 1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0))))
198, 13, 18mpbi2and 955 . 2 (𝜑1 = (𝑘 ∈ (Base‘𝑍) ↦ if(𝑘𝑈, 1, 0)))
20 simpr 477 . . . 4 ((𝜑𝑘 = 𝐴) → 𝑘 = 𝐴)
21 dchr1.a . . . . 5 (𝜑𝐴𝑈)
2221adantr 481 . . . 4 ((𝜑𝑘 = 𝐴) → 𝐴𝑈)
2320, 22eqeltrd 2698 . . 3 ((𝜑𝑘 = 𝐴) → 𝑘𝑈)
2423iftrued 4068 . 2 ((𝜑𝑘 = 𝐴) → if(𝑘𝑈, 1, 0) = 1)
254, 5unitss 18584 . . 3 𝑈 ⊆ (Base‘𝑍)
2625, 21sseldi 3582 . 2 (𝜑𝐴 ∈ (Base‘𝑍))
27 1cnd 10003 . 2 (𝜑 → 1 ∈ ℂ)
2819, 24, 26, 27fvmptd 6247 1 (𝜑 → ( 1𝐴) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ifcif 4060   ↦ cmpt 4675  ‘cfv 5849  (class class class)co 6607  ℂcc 9881  0cc0 9883  1c1 9884  ℕcn 10967  Basecbs 15784  +gcplusg 15865  0gc0g 16024  Grpcgrp 17346  Abelcabl 18118  Unitcui 18563  ℤ/nℤczn 19773  DChrcdchr 24864 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-addf 9962  ax-mulf 9963 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-tpos 7300  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-ec 7692  df-qs 7696  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-0g 16026  df-imas 16092  df-qus 16093  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-nsg 17516  df-eqg 17517  df-cmn 18119  df-abl 18120  df-mgp 18414  df-ur 18426  df-ring 18473  df-cring 18474  df-oppr 18547  df-dvdsr 18565  df-unit 18566  df-invr 18596  df-subrg 18702  df-lmod 18789  df-lss 18855  df-lsp 18894  df-sra 19094  df-rgmod 19095  df-lidl 19096  df-rsp 19097  df-2idl 19154  df-cnfld 19669  df-zring 19741  df-zn 19777  df-dchr 24865 This theorem is referenced by:  dchrinv  24893  dchr1re  24895  dchrsum2  24900  rpvmasumlem  25083  rpvmasum2  25108
 Copyright terms: Public domain W3C validator