MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr1cl Structured version   Visualization version   GIF version

Theorem dchr1cl 24957
Description: Closure of the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchr1cl.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchr1cl (𝜑1𝐷)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchr1cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchr1cl.o . 2 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
2 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . 3 𝐵 = (Base‘𝑍)
5 dchrn0.u . . 3 𝑈 = (Unit‘𝑍)
6 dchr1cl.n . . 3 (𝜑𝑁 ∈ ℕ)
7 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
8 eqidd 2621 . . 3 (𝑘 = 𝑥 → 1 = 1)
9 eqidd 2621 . . 3 (𝑘 = 𝑦 → 1 = 1)
10 eqidd 2621 . . 3 (𝑘 = (𝑥(.r𝑍)𝑦) → 1 = 1)
11 eqidd 2621 . . 3 (𝑘 = (1r𝑍) → 1 = 1)
12 1cnd 10041 . . 3 ((𝜑𝑘𝑈) → 1 ∈ ℂ)
13 1t1e1 11160 . . . . 5 (1 · 1) = 1
1413eqcomi 2629 . . . 4 1 = (1 · 1)
1514a1i 11 . . 3 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
16 eqidd 2621 . . 3 (𝜑 → 1 = 1)
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16dchrelbasd 24945 . 2 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)) ∈ 𝐷)
181, 17syl5eqel 2703 1 (𝜑1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  ifcif 4077  cmpt 4720  cfv 5876  (class class class)co 6635  0cc0 9921  1c1 9922   · cmul 9926  cn 11005  Basecbs 15838  .rcmulr 15923  1rcur 18482  Unitcui 18620  ℤ/nczn 19832  DChrcdchr 24938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-ec 7729  df-qs 7733  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-0g 16083  df-imas 16149  df-qus 16150  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-nsg 17573  df-eqg 17574  df-cmn 18176  df-abl 18177  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-subrg 18759  df-lmod 18846  df-lss 18914  df-lsp 18953  df-sra 19153  df-rgmod 19154  df-lidl 19155  df-rsp 19156  df-2idl 19213  df-cnfld 19728  df-zring 19800  df-zn 19836  df-dchr 24939
This theorem is referenced by:  dchrmulid2  24958  dchrabl  24960  dchr1  24963
  Copyright terms: Public domain W3C validator