MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   GIF version

Theorem dchrelbas3 25008
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas3 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑁   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑦)

Proof of Theorem dchrelbas3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas2 25007 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
8 fveq2 6229 . . . . . . . 8 (𝑧 = 𝑥 → (𝑋𝑧) = (𝑋𝑥))
98neeq1d 2882 . . . . . . 7 (𝑧 = 𝑥 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
10 eleq1 2718 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑈𝑥𝑈))
119, 10imbi12d 333 . . . . . 6 (𝑧 = 𝑥 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1211cbvralv 3201 . . . . 5 (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
135nnnn0d 11389 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
142zncrng 19941 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
16 crngring 18604 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
18 eqid 2651 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1918ringmgp 18599 . . . . . . . . 9 (𝑍 ∈ Ring → (mulGrp‘𝑍) ∈ Mnd)
2017, 19syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑍) ∈ Mnd)
21 cnring 19816 . . . . . . . . 9 fld ∈ Ring
22 eqid 2651 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 18599 . . . . . . . . 9 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2421, 23ax-mp 5 . . . . . . . 8 (mulGrp‘ℂfld) ∈ Mnd
2518, 3mgpbas 18541 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑍))
26 cnfldbas 19798 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
2722, 26mgpbas 18541 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
28 eqid 2651 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
2918, 28mgpplusg 18539 . . . . . . . . . 10 (.r𝑍) = (+g‘(mulGrp‘𝑍))
30 cnfldmul 19800 . . . . . . . . . . 11 · = (.r‘ℂfld)
3122, 30mgpplusg 18539 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
32 eqid 2651 . . . . . . . . . . 11 (1r𝑍) = (1r𝑍)
3318, 32ringidval 18549 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
34 cnfld1 19819 . . . . . . . . . . 11 1 = (1r‘ℂfld)
3522, 34ringidval 18549 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
3625, 27, 29, 31, 33, 35ismhm 17384 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) ∧ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3736baib 964 . . . . . . . 8 (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3820, 24, 37sylancl 695 . . . . . . 7 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3938adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
40 biimt 349 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4140adantl 481 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4217ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ Ring)
43 simprl 809 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
44 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
453, 28ringcl 18607 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
4642, 43, 44, 45syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
47 simpllr 815 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈))
48 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑋𝑧) = (𝑋‘(𝑥(.r𝑍)𝑦)))
4948neeq1d 2882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → ((𝑋𝑧) ≠ 0 ↔ (𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0))
50 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑧𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5149, 50imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
5251rspcv 3336 . . . . . . . . . . . . . . . . . . . 20 ((𝑥(.r𝑍)𝑦) ∈ 𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
5346, 47, 52sylc 65 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5415ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ CRing)
554, 28, 3unitmulclb 18711 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ CRing ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5654, 43, 44, 55syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5753, 56sylibd 229 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥𝑈𝑦𝑈)))
5857necon1bd 2841 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0))
5958imp 444 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0)
6011rspcv 3336 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
6143, 47, 60sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
62 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
6362neeq1d 2882 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
64 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝑈𝑦𝑈))
6563, 64imbi12d 333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6665rspcv 3336 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐵 → (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6744, 47, 66sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈))
6861, 67anim12d 585 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) → (𝑥𝑈𝑦𝑈)))
6968con3dimp 456 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
70 neanior 2915 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) ↔ ¬ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
7170con2bii 346 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0) ↔ ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
7269, 71sylibr 224 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
73 simplr 807 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋:𝐵⟶ℂ)
7473, 43ffvelrnd 6400 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑥) ∈ ℂ)
7573, 44ffvelrnd 6400 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑦) ∈ ℂ)
7674, 75mul0ord 10715 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7776adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7872, 77mpbird 247 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) · (𝑋𝑦)) = 0)
7959, 78eqtr4d 2688 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
8079a1d 25 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
8179, 802thd 255 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8241, 81pm2.61dan 849 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8382pm5.74da 723 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))))
843, 4unitcl 18705 . . . . . . . . . . . . . . . 16 (𝑥𝑈𝑥𝐵)
853, 4unitcl 18705 . . . . . . . . . . . . . . . 16 (𝑦𝑈𝑦𝐵)
8684, 85anim12i 589 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → (𝑥𝐵𝑦𝐵))
8786pm4.71ri 666 . . . . . . . . . . . . . 14 ((𝑥𝑈𝑦𝑈) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)))
8887imbi1i 338 . . . . . . . . . . . . 13 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
89 impexp 461 . . . . . . . . . . . . 13 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
9088, 89bitri 264 . . . . . . . . . . . 12 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
9183, 90syl6bbr 278 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
92912albidv 1891 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
93 r2al 2968 . . . . . . . . . 10 (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
94 r2al 2968 . . . . . . . . . 10 (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9592, 93, 943bitr4g 303 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9695adantrr 753 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ (𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1)) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9796pm5.32da 674 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
98 3anan32 1068 . . . . . . 7 ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
99 an31 858 . . . . . . 7 (((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
10097, 98, 993bitr4g 303 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10139, 100bitrd 268 . . . . 5 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10212, 101sylan2br 492 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
103102pm5.32da 674 . . 3 (𝜑 → ((∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ))))
104 ancom 465 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))))
105 df-3an 1056 . . . . 5 ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
106105anbi2i 730 . . . 4 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
107 an13 857 . . . 4 ((𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
108106, 107bitri 264 . . 3 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
109103, 104, 1083bitr4g 303 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
1107, 109bitrd 268 1 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054  wal 1521   = wceq 1523  wcel 2030  wne 2823  wral 2941  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   · cmul 9979  cn 11058  0cn0 11330  Basecbs 15904  .rcmulr 15989  Mndcmnd 17341   MndHom cmhm 17380  mulGrpcmgp 18535  1rcur 18547  Ringcrg 18593  CRingccrg 18594  Unitcui 18685  fldccnfld 19794  ℤ/nczn 19899  DChrcdchr 25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-imas 16215  df-qus 16216  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-nsg 17639  df-eqg 17640  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-cnfld 19795  df-zring 19867  df-zn 19903  df-dchr 25003
This theorem is referenced by:  dchrelbasd  25009  dchrf  25012  dchrmulcl  25019  dchrinv  25031  lgsdchr  25125
  Copyright terms: Public domain W3C validator