MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   GIF version

Theorem dchrelbas3 25816
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas3 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑁   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑦)

Proof of Theorem dchrelbas3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas2 25815 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
8 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑥 → (𝑋𝑧) = (𝑋𝑥))
98neeq1d 3077 . . . . . . 7 (𝑧 = 𝑥 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
10 eleq1 2902 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑈𝑥𝑈))
119, 10imbi12d 347 . . . . . 6 (𝑧 = 𝑥 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1211cbvralvw 3451 . . . . 5 (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
135nnnn0d 11958 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
142zncrng 20693 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
16 crngring 19310 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
18 eqid 2823 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1918ringmgp 19305 . . . . . . . . 9 (𝑍 ∈ Ring → (mulGrp‘𝑍) ∈ Mnd)
2017, 19syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑍) ∈ Mnd)
21 cnring 20569 . . . . . . . . 9 fld ∈ Ring
22 eqid 2823 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 19305 . . . . . . . . 9 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2421, 23ax-mp 5 . . . . . . . 8 (mulGrp‘ℂfld) ∈ Mnd
2518, 3mgpbas 19247 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑍))
26 cnfldbas 20551 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
2722, 26mgpbas 19247 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
28 eqid 2823 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
2918, 28mgpplusg 19245 . . . . . . . . . 10 (.r𝑍) = (+g‘(mulGrp‘𝑍))
30 cnfldmul 20553 . . . . . . . . . . 11 · = (.r‘ℂfld)
3122, 30mgpplusg 19245 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
32 eqid 2823 . . . . . . . . . . 11 (1r𝑍) = (1r𝑍)
3318, 32ringidval 19255 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
34 cnfld1 20572 . . . . . . . . . . 11 1 = (1r‘ℂfld)
3522, 34ringidval 19255 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
3625, 27, 29, 31, 33, 35ismhm 17960 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) ∧ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3736baib 538 . . . . . . . 8 (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3820, 24, 37sylancl 588 . . . . . . 7 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3938adantr 483 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
40 biimt 363 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4140adantl 484 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
42 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑋𝑧) = (𝑋‘(𝑥(.r𝑍)𝑦)))
4342neeq1d 3077 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → ((𝑋𝑧) ≠ 0 ↔ (𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0))
44 eleq1 2902 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑧𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
4543, 44imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥(.r𝑍)𝑦) → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
46 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈))
4717ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ Ring)
48 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
49 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
503, 28ringcl 19313 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5147, 48, 49, 50syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5245, 46, 51rspcdva 3627 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5315ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ CRing)
544, 28, 3unitmulclb 19417 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ CRing ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5553, 48, 49, 54syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5652, 55sylibd 241 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥𝑈𝑦𝑈)))
5756necon1bd 3036 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0))
5857imp 409 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0)
5911, 46, 48rspcdva 3627 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
60 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
6160neeq1d 3077 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
62 eleq1 2902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑧𝑈𝑦𝑈))
6361, 62imbi12d 347 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6463, 46, 49rspcdva 3627 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈))
6559, 64anim12d 610 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) → (𝑥𝑈𝑦𝑈)))
6665con3dimp 411 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
67 neanior 3111 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) ↔ ¬ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
6867con2bii 360 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0) ↔ ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
6966, 68sylibr 236 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
70 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋:𝐵⟶ℂ)
7170, 48ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑥) ∈ ℂ)
7270, 49ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑦) ∈ ℂ)
7371, 72mul0ord 11292 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7473adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7569, 74mpbird 259 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) · (𝑋𝑦)) = 0)
7658, 75eqtr4d 2861 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776a1d 25 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7876, 772thd 267 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
7941, 78pm2.61dan 811 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8079pm5.74da 802 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))))
813, 4unitcl 19411 . . . . . . . . . . . . . . . 16 (𝑥𝑈𝑥𝐵)
823, 4unitcl 19411 . . . . . . . . . . . . . . . 16 (𝑦𝑈𝑦𝐵)
8381, 82anim12i 614 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → (𝑥𝐵𝑦𝐵))
8483pm4.71ri 563 . . . . . . . . . . . . . 14 ((𝑥𝑈𝑦𝑈) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)))
8584imbi1i 352 . . . . . . . . . . . . 13 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
86 impexp 453 . . . . . . . . . . . . 13 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8785, 86bitri 277 . . . . . . . . . . . 12 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8880, 87syl6bbr 291 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
89882albidv 1924 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
90 r2al 3203 . . . . . . . . . 10 (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
91 r2al 3203 . . . . . . . . . 10 (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9289, 90, 913bitr4g 316 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9392adantrr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ (𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1)) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9493pm5.32da 581 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
95 3anan32 1093 . . . . . . 7 ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
96 an31 646 . . . . . . 7 (((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9794, 95, 963bitr4g 316 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9839, 97bitrd 281 . . . . 5 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9912, 98sylan2br 596 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10099pm5.32da 581 . . 3 (𝜑 → ((∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ))))
101 ancom 463 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))))
102 df-3an 1085 . . . . 5 ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
103102anbi2i 624 . . . 4 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
104 an13 645 . . . 4 ((𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
105103, 104bitri 277 . . 3 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
106100, 101, 1053bitr4g 316 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
1077, 106bitrd 281 1 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3018  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   · cmul 10544  cn 11640  0cn0 11900  Basecbs 16485  .rcmulr 16568  Mndcmnd 17913   MndHom cmhm 17956  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  CRingccrg 19300  Unitcui 19391  fldccnfld 20547  ℤ/nczn 20652  DChrcdchr 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-nsg 18279  df-eqg 18280  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-cnfld 20548  df-zring 20620  df-zn 20656  df-dchr 25811
This theorem is referenced by:  dchrelbasd  25817  dchrf  25820  dchrmulcl  25827  dchrinv  25839  lgsdchr  25933
  Copyright terms: Public domain W3C validator