MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Visualization version   GIF version

Theorem dchrelbas4 25813
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
Assertion
Ref Expression
dchrelbas4 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝐷
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dchrelbas4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
31, 2dchrrcl 25810 . . 3 (𝑋𝐷𝑁 ∈ ℕ)
4 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
5 eqid 2821 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
6 eqid 2821 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
7 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
81, 4, 5, 6, 7, 2dchrelbas2 25807 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))))
9 nnnn0 11898 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantr 483 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑁 ∈ ℕ0)
11 dchrelbas4.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
124, 5, 11znzrhfo 20688 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fveq2 6665 . . . . . . . . . 10 ((𝐿𝑥) = 𝑦 → (𝑋‘(𝐿𝑥)) = (𝑋𝑦))
1413neeq1d 3075 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
15 eleq1 2900 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍)))
1614, 15imbi12d 347 . . . . . . . 8 ((𝐿𝑥) = 𝑦 → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1716cbvfo 7039 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1810, 12, 173syl 18 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
19 df-ne 3017 . . . . . . . . . 10 ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0)
2019a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0))
214, 6, 11znunit 20704 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
2210, 21sylan 582 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
23 1red 10636 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℝ)
24 simpr 487 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
25 simpll 765 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
2625nnzd 12080 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
27 nnne0 11665 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
28 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2928necon3ai 3041 . . . . . . . . . . . . . . 15 (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
3025, 27, 293syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
31 gcdn0cl 15845 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ)
3224, 26, 30, 31syl21anc 835 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ)
3332nnred 11647 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ)
3432nnge1d 11679 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁))
3523, 33, 34leltned 10787 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1))
3635necon2bbid 3059 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3722, 36bitrd 281 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3820, 37imbi12d 347 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))))
39 con34b 318 . . . . . . . 8 ((1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))
4038, 39syl6bbr 291 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4140ralbidva 3196 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4218, 41bitr3d 283 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4342pm5.32da 581 . . . 4 (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
448, 43bitrd 281 . . 3 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
453, 44biadanii 820 . 2 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
46 3anass 1091 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
4745, 46bitr4i 280 1 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138   class class class wbr 5059  ontowfo 6348  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532   < clt 10669  cn 11632  0cn0 11891  cz 11975   gcd cgcd 15837  Basecbs 16477   MndHom cmhm 17948  mulGrpcmgp 19233  Unitcui 19383  fldccnfld 20539  ℤRHomczrh 20641  ℤ/nczn 20644  DChrcdchr 25802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-imas 16775  df-qus 16776  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-nsg 18271  df-eqg 18272  df-ghm 18350  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-rnghom 19461  df-subrg 19527  df-lmod 19630  df-lss 19698  df-lsp 19738  df-sra 19938  df-rgmod 19939  df-lidl 19940  df-rsp 19941  df-2idl 19999  df-cnfld 20540  df-zring 20612  df-zrh 20645  df-zn 20648  df-dchr 25803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator