MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Visualization version   GIF version

Theorem dchrghm 24881
Description: A Dirichlet character restricted to the unit group of ℤ/n is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g 𝐺 = (DChr‘𝑁)
dchrghm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrghm.b 𝐷 = (Base‘𝐺)
dchrghm.u 𝑈 = (Unit‘𝑍)
dchrghm.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrghm.m 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
dchrghm.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrghm (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))

Proof of Theorem dchrghm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6 𝐺 = (DChr‘𝑁)
2 dchrghm.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrghm.b . . . . . 6 𝐷 = (Base‘𝐺)
41, 2, 3dchrmhm 24866 . . . . 5 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
5 dchrghm.x . . . . 5 (𝜑𝑋𝐷)
64, 5sseldi 3581 . . . 4 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
71, 3dchrrcl 24865 . . . . . . . . 9 (𝑋𝐷𝑁 ∈ ℕ)
85, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
98nnnn0d 11295 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
102zncrng 19812 . . . . . . 7 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ CRing)
12 crngring 18479 . . . . . 6 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Ring)
14 dchrghm.u . . . . . 6 𝑈 = (Unit‘𝑍)
15 eqid 2621 . . . . . 6 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1614, 15unitsubm 18591 . . . . 5 (𝑍 ∈ Ring → 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
1713, 16syl 17 . . . 4 (𝜑𝑈 ∈ (SubMnd‘(mulGrp‘𝑍)))
18 dchrghm.h . . . . 5 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
1918resmhm 17280 . . . 4 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑈 ∈ (SubMnd‘(mulGrp‘𝑍))) → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
206, 17, 19syl2anc 692 . . 3 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)))
21 cnring 19687 . . . . 5 fld ∈ Ring
22 cnfldbas 19669 . . . . . . 7 ℂ = (Base‘ℂfld)
23 cnfld0 19689 . . . . . . 7 0 = (0g‘ℂfld)
24 cndrng 19694 . . . . . . 7 fld ∈ DivRing
2522, 23, 24drngui 18674 . . . . . 6 (ℂ ∖ {0}) = (Unit‘ℂfld)
26 eqid 2621 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2725, 26unitsubm 18591 . . . . 5 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2821, 27ax-mp 5 . . . 4 (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld))
29 df-ima 5087 . . . . 5 (𝑋𝑈) = ran (𝑋𝑈)
30 eqid 2621 . . . . . . . . . 10 (Base‘𝑍) = (Base‘𝑍)
311, 2, 3, 30, 5dchrf 24867 . . . . . . . . 9 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
3230, 14unitss 18581 . . . . . . . . . 10 𝑈 ⊆ (Base‘𝑍)
3332sseli 3579 . . . . . . . . 9 (𝑥𝑈𝑥 ∈ (Base‘𝑍))
34 ffvelrn 6313 . . . . . . . . 9 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
3531, 33, 34syl2an 494 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ ℂ)
36 simpr 477 . . . . . . . . 9 ((𝜑𝑥𝑈) → 𝑥𝑈)
375adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑋𝐷)
3833adantl 482 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝑥 ∈ (Base‘𝑍))
391, 2, 3, 30, 14, 37, 38dchrn0 24875 . . . . . . . . 9 ((𝜑𝑥𝑈) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
4036, 39mpbird 247 . . . . . . . 8 ((𝜑𝑥𝑈) → (𝑋𝑥) ≠ 0)
41 eldifsn 4287 . . . . . . . 8 ((𝑋𝑥) ∈ (ℂ ∖ {0}) ↔ ((𝑋𝑥) ∈ ℂ ∧ (𝑋𝑥) ≠ 0))
4235, 40, 41sylanbrc 697 . . . . . . 7 ((𝜑𝑥𝑈) → (𝑋𝑥) ∈ (ℂ ∖ {0}))
4342ralrimiva 2960 . . . . . 6 (𝜑 → ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0}))
44 ffun 6005 . . . . . . . 8 (𝑋:(Base‘𝑍)⟶ℂ → Fun 𝑋)
4531, 44syl 17 . . . . . . 7 (𝜑 → Fun 𝑋)
46 fdm 6008 . . . . . . . . 9 (𝑋:(Base‘𝑍)⟶ℂ → dom 𝑋 = (Base‘𝑍))
4731, 46syl 17 . . . . . . . 8 (𝜑 → dom 𝑋 = (Base‘𝑍))
4832, 47syl5sseqr 3633 . . . . . . 7 (𝜑𝑈 ⊆ dom 𝑋)
49 funimass4 6204 . . . . . . 7 ((Fun 𝑋𝑈 ⊆ dom 𝑋) → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
5045, 48, 49syl2anc 692 . . . . . 6 (𝜑 → ((𝑋𝑈) ⊆ (ℂ ∖ {0}) ↔ ∀𝑥𝑈 (𝑋𝑥) ∈ (ℂ ∖ {0})))
5143, 50mpbird 247 . . . . 5 (𝜑 → (𝑋𝑈) ⊆ (ℂ ∖ {0}))
5229, 51syl5eqssr 3629 . . . 4 (𝜑 → ran (𝑋𝑈) ⊆ (ℂ ∖ {0}))
53 dchrghm.m . . . . 5 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
5453resmhm2b 17282 . . . 4 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑋𝑈) ⊆ (ℂ ∖ {0})) → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5528, 52, 54sylancr 694 . . 3 (𝜑 → ((𝑋𝑈) ∈ (𝐻 MndHom (mulGrp‘ℂfld)) ↔ (𝑋𝑈) ∈ (𝐻 MndHom 𝑀)))
5620, 55mpbid 222 . 2 (𝜑 → (𝑋𝑈) ∈ (𝐻 MndHom 𝑀))
5714, 18unitgrp 18588 . . . 4 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
5813, 57syl 17 . . 3 (𝜑𝐻 ∈ Grp)
5953cnmgpabl 19726 . . . 4 𝑀 ∈ Abel
60 ablgrp 18119 . . . 4 (𝑀 ∈ Abel → 𝑀 ∈ Grp)
6159, 60ax-mp 5 . . 3 𝑀 ∈ Grp
62 ghmmhmb 17592 . . 3 ((𝐻 ∈ Grp ∧ 𝑀 ∈ Grp) → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6358, 61, 62sylancl 693 . 2 (𝜑 → (𝐻 GrpHom 𝑀) = (𝐻 MndHom 𝑀))
6456, 63eleqtrrd 2701 1 (𝜑 → (𝑋𝑈) ∈ (𝐻 GrpHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  cdif 3552  wss 3555  {csn 4148  dom cdm 5074  ran crn 5075  cres 5076  cima 5077  Fun wfun 5841  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  cn 10964  0cn0 11236  Basecbs 15781  s cress 15782   MndHom cmhm 17254  SubMndcsubmnd 17255  Grpcgrp 17343   GrpHom cghm 17578  Abelcabl 18115  mulGrpcmgp 18410  Ringcrg 18468  CRingccrg 18469  Unitcui 18560  fldccnfld 19665  ℤ/nczn 19770  DChrcdchr 24857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-imas 16089  df-qus 16090  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-nsg 17513  df-eqg 17514  df-ghm 17579  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-subrg 18699  df-lmod 18786  df-lss 18852  df-lsp 18891  df-sra 19091  df-rgmod 19092  df-lidl 19093  df-rsp 19094  df-2idl 19151  df-cnfld 19666  df-zring 19738  df-zn 19774  df-dchr 24858
This theorem is referenced by:  dchrabs  24885  sum2dchr  24899
  Copyright terms: Public domain W3C validator