MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrhash Structured version   Visualization version   GIF version

Theorem dchrhash 25850
Description: There are exactly ϕ(𝑁) Dirichlet characters modulo 𝑁. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g 𝐺 = (DChr‘𝑁)
sumdchr.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrhash (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁))

Proof of Theorem dchrhash
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . 6 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
2 eqid 2824 . . . . . 6 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
31, 2znfi 20709 . . . . 5 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
4 sumdchr.g . . . . . 6 𝐺 = (DChr‘𝑁)
5 sumdchr.d . . . . . 6 𝐷 = (Base‘𝐺)
64, 5dchrfi 25834 . . . . 5 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
7 simprr 771 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥𝐷)
84, 1, 5, 2, 7dchrf 25821 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 simprl 769 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
108, 9ffvelrnd 6855 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑥𝐷)) → (𝑥𝑎) ∈ ℂ)
113, 6, 10fsumcom 15133 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎))
12 eqid 2824 . . . . . . 7 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
13 simpl 485 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
14 simpr 487 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)))
154, 5, 1, 12, 2, 13, 14sumdchr2 25849 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
16 velsn 4586 . . . . . . 7 (𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁)))
17 ifbi 4491 . . . . . . 7 ((𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} ↔ 𝑎 = (1r‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
1816, 17mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = if(𝑎 = (1r‘(ℤ/nℤ‘𝑁)), (♯‘𝐷), 0))
1915, 18eqtr4d 2862 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))) → Σ𝑥𝐷 (𝑥𝑎) = if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
2019sumeq2dv 15063 . . . 4 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))Σ𝑥𝐷 (𝑥𝑎) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
21 eqid 2824 . . . . . . 7 (0g𝐺) = (0g𝐺)
22 simpr 487 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → 𝑥𝐷)
234, 1, 5, 21, 22, 2dchrsum 25848 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
24 velsn 4586 . . . . . . 7 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
25 ifbi 4491 . . . . . . 7 ((𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺)) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2624, 25mp1i 13 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0) = if(𝑥 = (0g𝐺), (ϕ‘𝑁), 0))
2723, 26eqtr4d 2862 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐷) → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2827sumeq2dv 15063 . . . 4 (𝑁 ∈ ℕ → Σ𝑥𝐷 Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑥𝑎) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
2911, 20, 283eqtr3d 2867 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
30 nnnn0 11907 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
311zncrng 20694 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
32 crngring 19311 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
332, 12ringidcl 19321 . . . . . 6 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3430, 31, 32, 334syl 19 . . . . 5 (𝑁 ∈ ℕ → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3534snssd 4745 . . . 4 (𝑁 ∈ ℕ → {(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)))
36 hashcl 13720 . . . . . 6 (𝐷 ∈ Fin → (♯‘𝐷) ∈ ℕ0)
37 nn0cn 11910 . . . . . 6 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℂ)
386, 36, 373syl 18 . . . . 5 (𝑁 ∈ ℕ → (♯‘𝐷) ∈ ℂ)
3938ralrimivw 3186 . . . 4 (𝑁 ∈ ℕ → ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ)
403olcd 870 . . . 4 (𝑁 ∈ ℕ → ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin))
41 sumss2 15086 . . . 4 ((({(1r‘(ℤ/nℤ‘𝑁))} ⊆ (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) ∈ ℂ) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ⊆ (ℤ‘0) ∨ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
4235, 39, 40, 41syl21anc 835 . . 3 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁))if(𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))}, (♯‘𝐷), 0))
434dchrabl 25833 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
44 ablgrp 18914 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
455, 21grpidcl 18134 . . . . . 6 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
4643, 44, 453syl 18 . . . . 5 (𝑁 ∈ ℕ → (0g𝐺) ∈ 𝐷)
4746snssd 4745 . . . 4 (𝑁 ∈ ℕ → {(0g𝐺)} ⊆ 𝐷)
48 phicl 16109 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
4948nncnd 11657 . . . . 5 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℂ)
5049ralrimivw 3186 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ)
516olcd 870 . . . 4 (𝑁 ∈ ℕ → (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin))
52 sumss2 15086 . . . 4 ((({(0g𝐺)} ⊆ 𝐷 ∧ ∀𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) ∈ ℂ) ∧ (𝐷 ⊆ (ℤ‘0) ∨ 𝐷 ∈ Fin)) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5347, 50, 51, 52syl21anc 835 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = Σ𝑥𝐷 if(𝑥 ∈ {(0g𝐺)}, (ϕ‘𝑁), 0))
5429, 42, 533eqtr4d 2869 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁))
55 eqidd 2825 . . . 4 (𝑎 = (1r‘(ℤ/nℤ‘𝑁)) → (♯‘𝐷) = (♯‘𝐷))
5655sumsn 15104 . . 3 (((1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (♯‘𝐷) ∈ ℂ) → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷))
5734, 38, 56syl2anc 586 . 2 (𝑁 ∈ ℕ → Σ𝑎 ∈ {(1r‘(ℤ/nℤ‘𝑁))} (♯‘𝐷) = (♯‘𝐷))
58 eqidd 2825 . . . 4 (𝑥 = (0g𝐺) → (ϕ‘𝑁) = (ϕ‘𝑁))
5958sumsn 15104 . . 3 (((0g𝐺) ∈ 𝐷 ∧ (ϕ‘𝑁) ∈ ℂ) → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6046, 49, 59syl2anc 586 . 2 (𝑁 ∈ ℕ → Σ𝑥 ∈ {(0g𝐺)} (ϕ‘𝑁) = (ϕ‘𝑁))
6154, 57, 603eqtr3d 2867 1 (𝑁 ∈ ℕ → (♯‘𝐷) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wral 3141  wss 3939  ifcif 4470  {csn 4570  cfv 6358  Fincfn 8512  cc 10538  0cc0 10540  cn 11641  0cn0 11900  cuz 12246  chash 13693  Σcsu 15045  ϕcphi 16104  Basecbs 16486  0gc0g 16716  Grpcgrp 18106  Abelcabl 18910  1rcur 19254  Ringcrg 19300  CRingccrg 19301  ℤ/nczn 20653  DChrcdchr 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-rpss 7452  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-gcd 15847  df-prm 16019  df-phi 16106  df-pc 16177  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-qus 16785  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-nsg 18280  df-eqg 18281  df-ghm 18359  df-gim 18402  df-ga 18423  df-cntz 18450  df-oppg 18477  df-od 18659  df-gex 18660  df-pgp 18661  df-lsm 18764  df-pj1 18765  df-cmn 18911  df-abl 18912  df-cyg 19000  df-dprd 19120  df-dpj 19121  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-rnghom 19470  df-subrg 19536  df-lmod 19639  df-lss 19707  df-lsp 19747  df-sra 19947  df-rgmod 19948  df-lidl 19949  df-rsp 19950  df-2idl 20008  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-zring 20621  df-zrh 20654  df-zn 20657  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-0p 24274  df-limc 24467  df-dv 24468  df-ply 24781  df-idp 24782  df-coe 24783  df-dgr 24784  df-quot 24883  df-log 25143  df-cxp 25144  df-dchr 25812
This theorem is referenced by:  sumdchr  25851
  Copyright terms: Public domain W3C validator