Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinvcl Structured version   Visualization version   GIF version

Theorem dchrinvcl 24912
 Description: Closure of the group inverse operation on Dirichlet characters. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmulid2.t · = (+g𝐺)
dchrmulid2.x (𝜑𝑋𝐷)
dchrinvcl.n 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
Assertion
Ref Expression
dchrinvcl (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)   𝐾(𝑘)

Proof of Theorem dchrinvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrinvcl.n . . 3 𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0))
2 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
3 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
4 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
5 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
6 dchrmulid2.x . . . . 5 (𝜑𝑋𝐷)
7 dchrmhm.b . . . . . 6 𝐷 = (Base‘𝐺)
82, 7dchrrcl 24899 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
96, 8syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
10 fveq2 6158 . . . . 5 (𝑘 = 𝑥 → (𝑋𝑘) = (𝑋𝑥))
1110oveq2d 6631 . . . 4 (𝑘 = 𝑥 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑥)))
12 fveq2 6158 . . . . 5 (𝑘 = 𝑦 → (𝑋𝑘) = (𝑋𝑦))
1312oveq2d 6631 . . . 4 (𝑘 = 𝑦 → (1 / (𝑋𝑘)) = (1 / (𝑋𝑦)))
14 fveq2 6158 . . . . 5 (𝑘 = (𝑥(.r𝑍)𝑦) → (𝑋𝑘) = (𝑋‘(𝑥(.r𝑍)𝑦)))
1514oveq2d 6631 . . . 4 (𝑘 = (𝑥(.r𝑍)𝑦) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(𝑥(.r𝑍)𝑦))))
16 fveq2 6158 . . . . 5 (𝑘 = (1r𝑍) → (𝑋𝑘) = (𝑋‘(1r𝑍)))
1716oveq2d 6631 . . . 4 (𝑘 = (1r𝑍) → (1 / (𝑋𝑘)) = (1 / (𝑋‘(1r𝑍))))
182, 3, 7, 4, 6dchrf 24901 . . . . . 6 (𝜑𝑋:𝐵⟶ℂ)
194, 5unitss 18600 . . . . . . 7 𝑈𝐵
2019sseli 3584 . . . . . 6 (𝑘𝑈𝑘𝐵)
21 ffvelrn 6323 . . . . . 6 ((𝑋:𝐵⟶ℂ ∧ 𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
2218, 20, 21syl2an 494 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
23 simpr 477 . . . . . 6 ((𝜑𝑘𝑈) → 𝑘𝑈)
246adantr 481 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑋𝐷)
2520adantl 482 . . . . . . 7 ((𝜑𝑘𝑈) → 𝑘𝐵)
262, 3, 7, 4, 5, 24, 25dchrn0 24909 . . . . . 6 ((𝜑𝑘𝑈) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
2723, 26mpbird 247 . . . . 5 ((𝜑𝑘𝑈) → (𝑋𝑘) ≠ 0)
2822, 27reccld 10754 . . . 4 ((𝜑𝑘𝑈) → (1 / (𝑋𝑘)) ∈ ℂ)
29 1t1e1 11135 . . . . . . . 8 (1 · 1) = 1
3029eqcomi 2630 . . . . . . 7 1 = (1 · 1)
3130a1i 11 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 = (1 · 1))
322, 3, 7dchrmhm 24900 . . . . . . . 8 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
336adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋𝐷)
3432, 33sseldi 3586 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
35 simprl 793 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝑈)
3619, 35sseldi 3586 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑥𝐵)
37 simprr 795 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝑈)
3819, 37sseldi 3586 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑦𝐵)
39 eqid 2621 . . . . . . . . 9 (mulGrp‘𝑍) = (mulGrp‘𝑍)
4039, 4mgpbas 18435 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑍))
41 eqid 2621 . . . . . . . . 9 (.r𝑍) = (.r𝑍)
4239, 41mgpplusg 18433 . . . . . . . 8 (.r𝑍) = (+g‘(mulGrp‘𝑍))
43 eqid 2621 . . . . . . . . 9 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
44 cnfldmul 19692 . . . . . . . . 9 · = (.r‘ℂfld)
4543, 44mgpplusg 18433 . . . . . . . 8 · = (+g‘(mulGrp‘ℂfld))
4640, 42, 45mhmlin 17282 . . . . . . 7 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4734, 36, 38, 46syl3anc 1323 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
4831, 47oveq12d 6633 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
49 1cnd 10016 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 1 ∈ ℂ)
5018adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → 𝑋:𝐵⟶ℂ)
5150, 36ffvelrnd 6326 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ∈ ℂ)
5250, 38ffvelrnd 6326 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ∈ ℂ)
532, 3, 7, 4, 5, 33, 36dchrn0 24909 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) ≠ 0 ↔ 𝑥𝑈))
5435, 53mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑥) ≠ 0)
552, 3, 7, 4, 5, 33, 38dchrn0 24909 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑦) ≠ 0 ↔ 𝑦𝑈))
5637, 55mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (𝑋𝑦) ≠ 0)
5749, 51, 49, 52, 54, 56divmuldivd 10802 . . . . 5 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))) = ((1 · 1) / ((𝑋𝑥) · (𝑋𝑦))))
5848, 57eqtr4d 2658 . . . 4 ((𝜑 ∧ (𝑥𝑈𝑦𝑈)) → (1 / (𝑋‘(𝑥(.r𝑍)𝑦))) = ((1 / (𝑋𝑥)) · (1 / (𝑋𝑦))))
5932, 6sseldi 3586 . . . . . . 7 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
60 eqid 2621 . . . . . . . . 9 (1r𝑍) = (1r𝑍)
6139, 60ringidval 18443 . . . . . . . 8 (1r𝑍) = (0g‘(mulGrp‘𝑍))
62 cnfld1 19711 . . . . . . . . 9 1 = (1r‘ℂfld)
6343, 62ringidval 18443 . . . . . . . 8 1 = (0g‘(mulGrp‘ℂfld))
6461, 63mhm0 17283 . . . . . . 7 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
6559, 64syl 17 . . . . . 6 (𝜑 → (𝑋‘(1r𝑍)) = 1)
6665oveq2d 6631 . . . . 5 (𝜑 → (1 / (𝑋‘(1r𝑍))) = (1 / 1))
67 1div1e1 10677 . . . . 5 (1 / 1) = 1
6866, 67syl6eq 2671 . . . 4 (𝜑 → (1 / (𝑋‘(1r𝑍))) = 1)
692, 3, 4, 5, 9, 7, 11, 13, 15, 17, 28, 58, 68dchrelbasd 24898 . . 3 (𝜑 → (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)) ∈ 𝐷)
701, 69syl5eqel 2702 . 2 (𝜑𝐾𝐷)
71 dchrmulid2.t . . . 4 · = (+g𝐺)
722, 3, 7, 71, 70, 6dchrmul 24907 . . 3 (𝜑 → (𝐾 · 𝑋) = (𝐾𝑓 · 𝑋))
73 fvex 6168 . . . . . . 7 (Base‘𝑍) ∈ V
744, 73eqeltri 2694 . . . . . 6 𝐵 ∈ V
7574a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
76 ovex 6643 . . . . . . 7 (1 / (𝑋𝑘)) ∈ V
77 c0ex 9994 . . . . . . 7 0 ∈ V
7876, 77ifex 4134 . . . . . 6 if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V
7978a1i 11 . . . . 5 ((𝜑𝑘𝐵) → if(𝑘𝑈, (1 / (𝑋𝑘)), 0) ∈ V)
8018ffvelrnda 6325 . . . . 5 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
811a1i 11 . . . . 5 (𝜑𝐾 = (𝑘𝐵 ↦ if(𝑘𝑈, (1 / (𝑋𝑘)), 0)))
8218feqmptd 6216 . . . . 5 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
8375, 79, 80, 81, 82offval2 6879 . . . 4 (𝜑 → (𝐾𝑓 · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
84 ovif 6702 . . . . . . 7 (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘)))
8580adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
866adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑋𝐷)
87 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝑘𝐵)
882, 3, 7, 4, 5, 86, 87dchrn0 24909 . . . . . . . . . . 11 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 ↔ 𝑘𝑈))
8988biimpar 502 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ≠ 0)
9085, 89recid2d 10757 . . . . . . . . 9 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → ((1 / (𝑋𝑘)) · (𝑋𝑘)) = 1)
9190ifeq1da 4094 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, (0 · (𝑋𝑘))))
9280mul02d 10194 . . . . . . . . 9 ((𝜑𝑘𝐵) → (0 · (𝑋𝑘)) = 0)
9392ifeq2d 4083 . . . . . . . 8 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9491, 93eqtrd 2655 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝑈, ((1 / (𝑋𝑘)) · (𝑋𝑘)), (0 · (𝑋𝑘))) = if(𝑘𝑈, 1, 0))
9584, 94syl5eq 2667 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘)) = if(𝑘𝑈, 1, 0))
9695mpteq2dva 4714 . . . . 5 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
97 dchr1cl.o . . . . 5 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
9896, 97syl6reqr 2674 . . . 4 (𝜑1 = (𝑘𝐵 ↦ (if(𝑘𝑈, (1 / (𝑋𝑘)), 0) · (𝑋𝑘))))
9983, 98eqtr4d 2658 . . 3 (𝜑 → (𝐾𝑓 · 𝑋) = 1 )
10072, 99eqtrd 2655 . 2 (𝜑 → (𝐾 · 𝑋) = 1 )
10170, 100jca 554 1 (𝜑 → (𝐾𝐷 ∧ (𝐾 · 𝑋) = 1 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3190  ifcif 4064   ↦ cmpt 4683  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ∘𝑓 cof 6860  ℂcc 9894  0cc0 9896  1c1 9897   · cmul 9901   / cdiv 10644  ℕcn 10980  Basecbs 15800  +gcplusg 15881  .rcmulr 15882   MndHom cmhm 17273  mulGrpcmgp 18429  1rcur 18441  Unitcui 18579  ℂfldccnfld 19686  ℤ/nℤczn 19791  DChrcdchr 24891 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-addf 9975  ax-mulf 9976 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-nsg 17532  df-eqg 17533  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-cnfld 19687  df-zring 19759  df-zn 19795  df-dchr 24892 This theorem is referenced by:  dchrabl  24913
 Copyright terms: Public domain W3C validator