MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Structured version   Visualization version   GIF version

Theorem dchrisum 26060
Description: If 𝑛 ∈ [𝑀, +∞) ↦ 𝐴(𝑛) is a positive decreasing function approaching zero, then the infinite sum Σ𝑛, 𝑋(𝑛)𝐴(𝑛) is convergent, with the partial sum Σ𝑛𝑥, 𝑋(𝑛)𝐴(𝑛) within 𝑂(𝐴(𝑀)) of the limit 𝑇. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisum (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Distinct variable groups:   𝑥,𝑛,𝑐,𝑡, 1   𝐹,𝑐,𝑛,𝑡,𝑥   𝐴,𝑐,𝑡,𝑥   𝑁,𝑐,𝑛,𝑡,𝑥   𝜑,𝑐,𝑛,𝑡,𝑥   𝐵,𝑐,𝑛   𝑛,𝑍,𝑥   𝐷,𝑐,𝑛,𝑡,𝑥   𝐿,𝑐,𝑛,𝑡,𝑥   𝑀,𝑐,𝑛,𝑥   𝑋,𝑐,𝑛,𝑡,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥,𝑡)   𝐺(𝑥,𝑡,𝑛,𝑐)   𝑀(𝑡)   𝑍(𝑡,𝑐)

Proof of Theorem dchrisum
Dummy variables 𝑚 𝑢 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 13334 . . 3 (0..^𝑁) ∈ Fin
2 fzofi 13334 . . . . . . 7 (0..^𝑢) ∈ Fin
32a1i 11 . . . . . 6 (𝜑 → (0..^𝑢) ∈ Fin)
4 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
5 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
6 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
7 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
8 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
98adantr 483 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑋𝐷)
10 elfzoelz 13030 . . . . . . . 8 (𝑚 ∈ (0..^𝑢) → 𝑚 ∈ ℤ)
1110adantl 484 . . . . . . 7 ((𝜑𝑚 ∈ (0..^𝑢)) → 𝑚 ∈ ℤ)
124, 5, 6, 7, 9, 11dchrzrhcl 25813 . . . . . 6 ((𝜑𝑚 ∈ (0..^𝑢)) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
133, 12fsumcl 15082 . . . . 5 (𝜑 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) ∈ ℂ)
1413abscld 14788 . . . 4 (𝜑 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
1514ralrimivw 3181 . . 3 (𝜑 → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ)
16 fimaxre3 11579 . . 3 (((0..^𝑁) ∈ Fin ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
171, 15, 16sylancr 589 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
18 rpvmasum.a . . . 4 (𝜑𝑁 ∈ ℕ)
1918adantr 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑁 ∈ ℕ)
20 rpvmasum.1 . . 3 1 = (0g𝐺)
218adantr 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋𝐷)
22 dchrisum.n1 . . . 4 (𝜑𝑋1 )
2322adantr 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑋1 )
24 dchrisum.2 . . 3 (𝑛 = 𝑥𝐴 = 𝐵)
25 dchrisum.3 . . . 4 (𝜑𝑀 ∈ ℕ)
2625adantr 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑀 ∈ ℕ)
27 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
2827adantlr 713 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
29 dchrisum.5 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
30293adant1r 1172 . . 3 (((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
31 dchrisum.6 . . . 4 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
3231adantr 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
33 dchrisum.7 . . 3 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
34 simprl 769 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → 𝑟 ∈ ℝ)
35 simprr 771 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)
36 2fveq3 6668 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑋‘(𝐿𝑚)) = (𝑋‘(𝐿𝑛)))
3736cbvsumv 15045 . . . . . . . 8 Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛))
38 oveq2 7156 . . . . . . . . 9 (𝑢 = 𝑖 → (0..^𝑢) = (0..^𝑖))
3938sumeq1d 15050 . . . . . . . 8 (𝑢 = 𝑖 → Σ𝑛 ∈ (0..^𝑢)(𝑋‘(𝐿𝑛)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4037, 39syl5eq 2866 . . . . . . 7 (𝑢 = 𝑖 → Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚)) = Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛)))
4140fveq2d 6667 . . . . . 6 (𝑢 = 𝑖 → (abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) = (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))))
4241breq1d 5067 . . . . 5 (𝑢 = 𝑖 → ((abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ (abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟))
4342cbvralvw 3448 . . . 4 (∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟 ↔ ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
4435, 43sylib 220 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∀𝑖 ∈ (0..^𝑁)(abs‘Σ𝑛 ∈ (0..^𝑖)(𝑋‘(𝐿𝑛))) ≤ 𝑟)
455, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 44dchrisumlem3 26059 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑢 ∈ (0..^𝑁)(abs‘Σ𝑚 ∈ (0..^𝑢)(𝑋‘(𝐿𝑚))) ≤ 𝑟)) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
4617, 45rexlimddv 3289 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑥 ∈ (𝑀[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wral 3136  wrex 3137   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  Fincfn 8501  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664  cle 10668  cmin 10862  cn 11630  cz 11973  +crp 12381  [,)cico 12732  ..^cfzo 13025  cfl 13152  seqcseq 13361  abscabs 14585  cli 14833  𝑟 crli 14834  Σcsu 15034  Basecbs 16475  0gc0g 16705  ℤRHomczrh 20639  ℤ/nczn 20642  DChrcdchr 25800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-dvds 15600  df-gcd 15836  df-phi 16095  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-rnghom 19459  df-subrg 19525  df-lmod 19628  df-lss 19696  df-lsp 19736  df-sra 19936  df-rgmod 19937  df-lidl 19938  df-rsp 19939  df-2idl 19997  df-cnfld 20538  df-zring 20610  df-zrh 20643  df-zn 20646  df-dchr 25801
This theorem is referenced by:  dchrmusumlema  26061  dchrvmasumlema  26068  dchrisum0lema  26082
  Copyright terms: Public domain W3C validator