MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Visualization version   GIF version

Theorem dchrisum0flb 24913
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.a (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
dchrisum0flb (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑞,𝑏,𝑣,𝐴   𝑁,𝑞   𝐿,𝑏,𝑣   𝑋,𝑏,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flb
Dummy variables 𝑘 𝑦 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0flb.a . . . 4 (𝜑𝐴 ∈ ℕ)
2 nnuz 11552 . . . 4 ℕ = (ℤ‘1)
31, 2syl6eleq 2694 . . 3 (𝜑𝐴 ∈ (ℤ‘1))
4 eluzfz2 12172 . . 3 (𝐴 ∈ (ℤ‘1) → 𝐴 ∈ (1...𝐴))
53, 4syl 17 . 2 (𝜑𝐴 ∈ (1...𝐴))
6 oveq2 6532 . . . . . 6 (𝑘 = 1 → (1...𝑘) = (1...1))
76raleqdv 3117 . . . . 5 (𝑘 = 1 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
87imbi2d 328 . . . 4 (𝑘 = 1 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
9 oveq2 6532 . . . . . 6 (𝑘 = 𝑖 → (1...𝑘) = (1...𝑖))
109raleqdv 3117 . . . . 5 (𝑘 = 𝑖 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1110imbi2d 328 . . . 4 (𝑘 = 𝑖 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
12 oveq2 6532 . . . . . 6 (𝑘 = (𝑖 + 1) → (1...𝑘) = (1...(𝑖 + 1)))
1312raleqdv 3117 . . . . 5 (𝑘 = (𝑖 + 1) → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1413imbi2d 328 . . . 4 (𝑘 = (𝑖 + 1) → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
15 oveq2 6532 . . . . . 6 (𝑘 = 𝐴 → (1...𝑘) = (1...𝐴))
1615raleqdv 3117 . . . . 5 (𝑘 = 𝐴 → (∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
1716imbi2d 328 . . . 4 (𝑘 = 𝐴 → ((𝜑 → ∀𝑦 ∈ (1...𝑘)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) ↔ (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
18 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
19 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
20 rpvmasum.a . . . . . 6 (𝜑𝑁 ∈ ℕ)
21 rpvmasum2.g . . . . . 6 𝐺 = (DChr‘𝑁)
22 rpvmasum2.d . . . . . 6 𝐷 = (Base‘𝐺)
23 rpvmasum2.1 . . . . . 6 1 = (0g𝐺)
24 dchrisum0f.f . . . . . 6 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
25 dchrisum0f.x . . . . . 6 (𝜑𝑋𝐷)
26 dchrisum0flb.r . . . . . 6 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
27 2prm 15186 . . . . . . 7 2 ∈ ℙ
2827a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℙ)
29 0nn0 11151 . . . . . . 7 0 ∈ ℕ0
3029a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
3118, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30dchrisum0flblem1 24911 . . . . 5 (𝜑 → if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)))
32 elfz1eq 12175 . . . . . . . . . . . 12 (𝑦 ∈ (1...1) → 𝑦 = 1)
33 2nn0 11153 . . . . . . . . . . . . 13 2 ∈ ℕ0
3433numexp0 15561 . . . . . . . . . . . 12 (2↑0) = 1
3532, 34syl6eqr 2658 . . . . . . . . . . 11 (𝑦 ∈ (1...1) → 𝑦 = (2↑0))
3635fveq2d 6089 . . . . . . . . . 10 (𝑦 ∈ (1...1) → (√‘𝑦) = (√‘(2↑0)))
3736eleq1d 2668 . . . . . . . . 9 (𝑦 ∈ (1...1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(2↑0)) ∈ ℕ))
3837ifbid 4054 . . . . . . . 8 (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(2↑0)) ∈ ℕ, 1, 0))
3935fveq2d 6089 . . . . . . . 8 (𝑦 ∈ (1...1) → (𝐹𝑦) = (𝐹‘(2↑0)))
4038, 39breq12d 4587 . . . . . . 7 (𝑦 ∈ (1...1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0))))
4140biimprcd 238 . . . . . 6 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → (𝑦 ∈ (1...1) → if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
4241ralrimiv 2944 . . . . 5 (if((√‘(2↑0)) ∈ ℕ, 1, 0) ≤ (𝐹‘(2↑0)) → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
4331, 42syl 17 . . . 4 (𝜑 → ∀𝑦 ∈ (1...1)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
44 simpr 475 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
4544, 2syl6eleq 2694 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
4645adantrr 748 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → 𝑖 ∈ (ℤ‘1))
47 eluzp1p1 11542 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
4846, 47syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘(1 + 1)))
49 df-2 10923 . . . . . . . . . . . . . 14 2 = (1 + 1)
5049fveq2i 6088 . . . . . . . . . . . . 13 (ℤ‘2) = (ℤ‘(1 + 1))
5148, 50syl6eleqr 2695 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → (𝑖 + 1) ∈ (ℤ‘2))
52 exprmfct 15197 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5351, 52syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑖 + 1))
5420ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑁 ∈ ℕ)
5525ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋𝐷)
5626ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑋:(Base‘𝑍)⟶ℝ)
5751adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (𝑖 + 1) ∈ (ℤ‘2))
58 simprl 789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∈ ℙ)
59 simprr 791 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑝 ∥ (𝑖 + 1))
60 simplrr 796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
61 simplrl 795 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℕ)
6261nnzd 11310 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → 𝑖 ∈ ℤ)
63 fzval3 12356 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (1...𝑖) = (1..^(𝑖 + 1)))
6462, 63syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (1...𝑖) = (1..^(𝑖 + 1)))
6564raleqdv 3117 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
6660, 65mpbid 220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → ∀𝑦 ∈ (1..^(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
6718, 19, 54, 21, 22, 23, 24, 55, 56, 57, 58, 59, 66dchrisum0flblem2 24912 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) ∧ (𝑝 ∈ ℙ ∧ 𝑝 ∥ (𝑖 + 1))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
6853, 67rexlimddv 3013 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
69 ovex 6552 . . . . . . . . . . 11 (𝑖 + 1) ∈ V
70 fveq2 6085 . . . . . . . . . . . . . 14 (𝑦 = (𝑖 + 1) → (√‘𝑦) = (√‘(𝑖 + 1)))
7170eleq1d 2668 . . . . . . . . . . . . 13 (𝑦 = (𝑖 + 1) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝑖 + 1)) ∈ ℕ))
7271ifbid 4054 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0))
73 fveq2 6085 . . . . . . . . . . . 12 (𝑦 = (𝑖 + 1) → (𝐹𝑦) = (𝐹‘(𝑖 + 1)))
7472, 73breq12d 4587 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1))))
7569, 74ralsn 4165 . . . . . . . . . 10 (∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝑖 + 1)) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑖 + 1)))
7668, 75sylibr 222 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
7776expr 640 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
7877ancld 573 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
79 fzsuc 12210 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8045, 79syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → (1...(𝑖 + 1)) = ((1...𝑖) ∪ {(𝑖 + 1)}))
8180raleqdv 3117 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ ∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
82 ralunb 3752 . . . . . . . 8 (∀𝑦 ∈ ((1...𝑖) ∪ {(𝑖 + 1)})if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8381, 82syl6bb 274 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ∧ ∀𝑦 ∈ {(𝑖 + 1)}if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8478, 83sylibrd 247 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
8584expcom 449 . . . . 5 (𝑖 ∈ ℕ → (𝜑 → (∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
8685a2d 29 . . . 4 (𝑖 ∈ ℕ → ((𝜑 → ∀𝑦 ∈ (1...𝑖)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)) → (𝜑 → ∀𝑦 ∈ (1...(𝑖 + 1))if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))))
878, 11, 14, 17, 43, 86nnind 10882 . . 3 (𝐴 ∈ ℕ → (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦)))
881, 87mpcom 37 . 2 (𝜑 → ∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
89 fveq2 6085 . . . . . 6 (𝑦 = 𝐴 → (√‘𝑦) = (√‘𝐴))
9089eleq1d 2668 . . . . 5 (𝑦 = 𝐴 → ((√‘𝑦) ∈ ℕ ↔ (√‘𝐴) ∈ ℕ))
9190ifbid 4054 . . . 4 (𝑦 = 𝐴 → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘𝐴) ∈ ℕ, 1, 0))
92 fveq2 6085 . . . 4 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
9391, 92breq12d 4587 . . 3 (𝑦 = 𝐴 → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
9493rspcv 3274 . 2 (𝐴 ∈ (1...𝐴) → (∀𝑦 ∈ (1...𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴)))
955, 88, 94sylc 62 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2892  wrex 2893  {crab 2896  cun 3534  ifcif 4032  {csn 4121   class class class wbr 4574  cmpt 4634  wf 5783  cfv 5787  (class class class)co 6524  cr 9788  0cc0 9789  1c1 9790   + caddc 9792  cle 9928  cn 10864  2c2 10914  0cn0 11136  cz 11207  cuz 11516  ...cfz 12149  ..^cfzo 12286  cexp 12674  csqrt 13764  Σcsu 14207  cdvds 14764  cprime 15166  Basecbs 15638  0gc0g 15866  ℤRHomczrh 19609  ℤ/nczn 19612  DChrcdchr 24671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-disj 4545  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-tpos 7213  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-omul 7426  df-er 7603  df-ec 7605  df-qs 7609  df-map 7720  df-pm 7721  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-acn 8625  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-ioo 12003  df-ioc 12004  df-ico 12005  df-icc 12006  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-fac 12875  df-bc 12904  df-hash 12932  df-shft 13598  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-limsup 13993  df-clim 14010  df-rlim 14011  df-sum 14208  df-ef 14580  df-sin 14582  df-cos 14583  df-pi 14585  df-dvds 14765  df-gcd 14998  df-prm 15167  df-numer 15224  df-denom 15225  df-pc 15323  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-qus 15935  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-mhm 17101  df-submnd 17102  df-grp 17191  df-minusg 17192  df-sbg 17193  df-mulg 17307  df-subg 17357  df-nsg 17358  df-eqg 17359  df-ghm 17424  df-cntz 17516  df-od 17714  df-cmn 17961  df-abl 17962  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-oppr 18389  df-dvdsr 18407  df-unit 18408  df-invr 18438  df-dvr 18449  df-rnghom 18481  df-drng 18515  df-subrg 18544  df-lmod 18631  df-lss 18697  df-lsp 18736  df-sra 18936  df-rgmod 18937  df-lidl 18938  df-rsp 18939  df-2idl 18996  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-mopn 19506  df-fbas 19507  df-fg 19508  df-cnfld 19511  df-zring 19581  df-zrh 19613  df-zn 19616  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cld 20572  df-ntr 20573  df-cls 20574  df-nei 20651  df-lp 20689  df-perf 20690  df-cn 20780  df-cnp 20781  df-haus 20868  df-tx 21114  df-hmeo 21307  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-xms 21873  df-ms 21874  df-tms 21875  df-cncf 22417  df-limc 23350  df-dv 23351  df-log 24021  df-cxp 24022  df-dchr 24672
This theorem is referenced by:  dchrisum0fno1  24914
  Copyright terms: Public domain W3C validator