MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Visualization version   GIF version

Theorem dchrisum0lem1 24922
Description: Lemma for dchrisum0 24926. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 12589 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 fzfid 12589 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∈ Fin)
3 fzfid 12589 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
4 elfznn 12196 . . . . . . 7 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
5 elfzuz 12164 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
64, 5anim12i 587 . . . . . 6 ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
8 elfzuz 12164 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
9 elfznn 12196 . . . . . . 7 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
108, 9anim12ci 588 . . . . . 6 ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
1110a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
12 eluzelz 11529 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ)
1312ad2antll 760 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ)
1413zred 11314 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ)
15 simpr 475 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
16 2z 11242 . . . . . . . . . . . . 13 2 ∈ ℤ
17 rpexpcl 12696 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1815, 16, 17sylancl 692 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
1918rpred 11704 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
2019adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ)
21 simprl 789 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ)
2221nnrpd 11702 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+)
2314, 20, 22lemuldivd 11753 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
2421nnred 10882 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
2515rprege0d 11711 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 flge0nn0 12438 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
27 nn0p1nn 11179 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
2928adantr 479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℕ)
30 simprr 791 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
31 eluznn 11590 . . . . . . . . . . . 12 ((((⌊‘𝑥) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
3229, 30, 31syl2anc 690 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ)
3332nnrpd 11702 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+)
3424, 20, 33lemuldiv2d 11754 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
3523, 34bitr3d 268 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
36 rpcn 11673 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3736adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
3837sqvald 12822 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥))
3938adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥))
40 simplr 787 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+)
4140rpred 11704 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ)
42 reflcl 12414 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
43 peano2re 10060 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
4441, 42, 433syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℝ)
45 fllep1 12419 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
4641, 45syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1))
47 eluzle 11532 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4847ad2antll 760 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4941, 44, 14, 46, 48letrd 10045 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥𝑚)
5041, 14, 40lemul1d 11747 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)))
5149, 50mpbid 220 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))
5239, 51eqbrtrd 4599 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥))
5320, 41, 33ledivmuld 11757 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥)))
5452, 53mpbird 245 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥)
55 nnre 10874 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
5655ad2antrl 759 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
5720, 32nndivred 10916 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ)
58 letr 9982 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
5956, 57, 41, 58syl3anc 1317 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
6054, 59mpan2d 705 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑𝑥))
6135, 60sylbid 228 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑𝑥))
6261pm4.71rd 664 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
63 nnge1 10893 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
6463ad2antrl 759 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑)
65 1re 9895 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
66 0lt1 10399 . . . . . . . . . . . . . . . 16 0 < 1
6765, 66pm3.2i 469 . . . . . . . . . . . . . . 15 (1 ∈ ℝ ∧ 0 < 1)
6867a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (1 ∈ ℝ ∧ 0 < 1))
6922rpregt0d 11710 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑))
7018adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ+)
7170rpregt0d 11710 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2)))
72 lediv2 10762 . . . . . . . . . . . . . 14 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7368, 69, 71, 72syl3anc 1317 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7464, 73mpbid 220 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))
7520recnd 9924 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ)
7675div1d 10642 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2))
7774, 76breqtrd 4603 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2))
78 simpl 471 . . . . . . . . . . . . 13 ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ)
79 nndivre 10903 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
8019, 78, 79syl2an 492 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
81 letr 9982 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8214, 80, 20, 81syl3anc 1317 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8377, 82mpan2d 705 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2)))
8435, 83sylbird 248 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2)))
8584pm4.71rd 664 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
8635, 62, 853bitr3d 296 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
87 fznnfl 12478 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
8887baibd 945 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8941, 21, 88syl2anc 690 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
9080flcld 12416 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ)
91 elfz5 12160 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9230, 90, 91syl2anc 690 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
93 flge 12423 . . . . . . . . . 10 ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9480, 13, 93syl2anc 690 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9592, 94bitr4d 269 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
9689, 95anbi12d 742 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
9720flcld 12416 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈ ℤ)
98 elfz5 12160 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
9930, 97, 98syl2anc 690 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
100 flge 12423 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10120, 13, 100syl2anc 690 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10299, 101bitr4d 269 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2)))
103 fznnfl 12478 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
104103baibd 945 . . . . . . . . 9 ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
10557, 21, 104syl2anc 690 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
106102, 105anbi12d 742 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
10786, 96, 1063bitr4d 298 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
108107ex 448 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))))
1097, 11, 108pm5.21ndd 367 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
110 ssun2 3738 . . . . . . . 8 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
11128adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
112 nnuz 11555 . . . . . . . . . 10 ℕ = (ℤ‘1)
113111, 112syl6eleq 2697 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
114 dchrisum0lem1a 24892 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
115114simprd 477 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
116 fzsplit2 12192 . . . . . . . . 9 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
117113, 115, 116syl2anc 690 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
118110, 117syl5sseqr 3616 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
119118sselda 3567 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
120 rpvmasum2.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
121 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
122 rpvmasum2.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
123 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
124 rpvmasum2.w . . . . . . . . . . . . 13 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
125 ssrab2 3649 . . . . . . . . . . . . 13 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
126124, 125eqsstri 3597 . . . . . . . . . . . 12 𝑊 ⊆ (𝐷 ∖ { 1 })
127 dchrisum0.b . . . . . . . . . . . 12 (𝜑𝑋𝑊)
128126, 127sseldi 3565 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
129128eldifad 3551 . . . . . . . . . 10 (𝜑𝑋𝐷)
130129ad3antrrr 761 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
131 elfzelz 12168 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
132131adantl 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
133120, 121, 122, 123, 130, 132dchrzrhcl 24687 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 elfznn 12196 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
135134adantl 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
136135nnrpd 11702 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
137136rpsqrtcld 13944 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
138137rpcnd 11706 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
139137rpne0d 11709 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
140133, 138, 139divcld 10650 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
1414adantl 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
142141nnrpd 11702 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
143142rpsqrtcld 13944 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℝ+)
144143rpcnne0d 11713 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
145144adantr 479 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
146145simpld 473 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ)
147145simprd 477 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0)
148140, 146, 147divcld 10650 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
149119, 148syldan 485 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
150149anasss 676 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1511, 2, 3, 109, 150fsumcom2 14293 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
152151mpteq2dva 4666 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
15365a1i 11 . . 3 (𝜑 → 1 ∈ ℝ)
154 2cn 10938 . . . . . . . 8 2 ∈ ℂ
15515rpsqrtcld 13944 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
156155rpcnd 11706 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
157 mulcl 9876 . . . . . . . 8 ((2 ∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 · (√‘𝑥)) ∈ ℂ)
158154, 156, 157sylancr 693 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
159143rprecred 11715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℝ)
1601, 159fsumrecl 14258 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℝ)
161160recnd 9924 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℂ)
162161, 158subcld 10243 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) ∈ ℂ)
163 2re 10937 . . . . . . . . . . 11 2 ∈ ℝ
164 dchrisum0.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (0[,)+∞))
165 elrege0 12105 . . . . . . . . . . . . 13 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
166164, 165sylib 206 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
167166simpld 473 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
168 remulcl 9877 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
169163, 167, 168sylancr 693 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℝ)
170169adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
171170, 155rerpdivcld 11735 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
172171recnd 9924 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
173158, 162, 172adddird 9921 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
174158, 161pncan3d 10246 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)))
175174oveq1d 6542 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
176 2cnd 10940 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
177176, 156, 172mulassd 9919 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))))
178170recnd 9924 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℂ)
179155rpne0d 11709 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
180178, 156, 179divcan2d 10652 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥))) = (2 · 𝐶))
181180oveq2d 6543 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))) = (2 · (2 · 𝐶)))
182177, 181eqtrd 2643 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · (2 · 𝐶)))
183182oveq1d 6542 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
184173, 175, 1833eqtr3d 2651 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
185184mpteq2dva 4666 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))))
186 remulcl 9877 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2 · 𝐶)) ∈ ℝ)
187163, 169, 186sylancr 693 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) ∈ ℝ)
188187recnd 9924 . . . . . 6 (𝜑 → (2 · (2 · 𝐶)) ∈ ℂ)
189188adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · (2 · 𝐶)) ∈ ℂ)
190162, 172mulcld 9916 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
191 rpssre 11675 . . . . . 6 + ⊆ ℝ
192 o1const 14144 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (2 · (2 · 𝐶)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
193191, 188, 192sylancr 693 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
194 eqid 2609 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))))
195194divsqrsum 24425 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟
196 rlimdmo1 14142 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
197195, 196mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
198178, 156, 179divrecd 10653 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) = ((2 · 𝐶) · (1 / (√‘𝑥))))
199198mpteq2dva 4666 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))))
200155rprecred 11715 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
201169recnd 9924 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℂ)
202 rlimconst 14069 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
203191, 201, 202sylancr 693 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
204 sqrtlim 24416 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
205204a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
206170, 200, 203, 205rlimmul 14169 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))) ⇝𝑟 ((2 · 𝐶) · 0))
207199, 206eqbrtrd 4599 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0))
208 rlimo1 14141 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
209207, 208syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
210162, 172, 197, 209o1mul2 14149 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
211189, 190, 193, 210o1add2 14148 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1))
212185, 211eqeltrd 2687 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
213160, 171remulcld 9926 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
2143, 149fsumcl 14257 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
2151, 214fsumcl 14257 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
216215abscld 13969 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
217213recnd 9924 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
218217abscld 13969 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ ℝ)
219214abscld 13969 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2201, 219fsumrecl 14258 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2211, 214fsumabs 14320 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
222171adantr 479 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
223159, 222remulcld 9926 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
224119, 140syldan 485 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
2253, 224fsumcl 14257 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
226225abscld 13969 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
227 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
228 rpvmasum2.1 . . . . . . . . . . 11 1 = (0g𝐺)
229 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
230 dchrisum0.s . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
231 dchrisum0.1 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
232121, 123, 227, 120, 122, 228, 124, 127, 229, 164, 230, 231dchrisum0lem1b 24921 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
233226, 222, 143, 232lediv1dd 11762 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)))
234143rpcnd 11706 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℂ)
235143rpne0d 11709 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ≠ 0)
236225, 234, 235absdivd 13988 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))))
2373, 234, 224, 235fsumdivc 14306 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
238237fveq2d 6092 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
239143rprege0d 11711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)))
240 absid 13830 . . . . . . . . . . . 12 (((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑))
241239, 240syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑑)) = (√‘𝑑))
242241oveq2d 6543 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)))
243236, 238, 2423eqtr3rd 2652 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
244172adantr 479 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
245244, 234, 235divrec2d 10654 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)) = ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
246233, 243, 2453brtr3d 4608 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
2471, 219, 223, 246fsumle 14318 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
248159recnd 9924 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℂ)
2491, 172, 248fsummulc1 14305 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
250247, 249breqtrrd 4605 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
251216, 220, 213, 221, 250letrd 10045 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
252213leabsd 13947 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
253216, 213, 218, 251, 252letrd 10045 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
254253adantrr 748 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
255153, 212, 213, 215, 254o1le 14177 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
256152, 255eqeltrrd 2688 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  {crab 2899  cdif 3536  cun 3537  wss 3539  {csn 4124   class class class wbr 4577  cmpt 4637  dom cdm 5028  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  +∞cpnf 9927   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  0cn0 11139  cz 11210  cuz 11519  +crp 11664  [,)cico 12004  ...cfz 12152  cfl 12408  seqcseq 12618  cexp 12677  csqrt 13767  abscabs 13768  cli 14009  𝑟 crli 14010  𝑂(1)co1 14011  Σcsu 14210  Basecbs 15641  0gc0g 15869  ℤRHomczrh 19612  ℤ/nczn 19615  DChrcdchr 24674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-ec 7608  df-qs 7612  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-o1 14015  df-lo1 14016  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-qus 15938  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-mulg 17310  df-subg 17360  df-nsg 17361  df-eqg 17362  df-ghm 17427  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-rnghom 18484  df-subrg 18547  df-lmod 18634  df-lss 18700  df-lsp 18739  df-sra 18939  df-rgmod 18940  df-lidl 18941  df-rsp 18942  df-2idl 18999  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-zring 19584  df-zrh 19616  df-zn 19619  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025  df-dchr 24675
This theorem is referenced by:  dchrisum0lem3  24925
  Copyright terms: Public domain W3C validator