MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Visualization version   GIF version

Theorem dchrisum0lem1 26094
Description: Lemma for dchrisum0 26098. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 13344 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
2 fzfid 13344 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∈ Fin)
3 fzfid 13344 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ∈ Fin)
4 elfznn 12939 . . . . . . 7 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
5 elfzuz 12907 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
64, 5anim12i 614 . . . . . 6 ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
8 elfzuz 12907 . . . . . . 7 (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
9 elfznn 12939 . . . . . . 7 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
108, 9anim12ci 615 . . . . . 6 ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))))
1110a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))))
12 eluzelz 12256 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → 𝑚 ∈ ℤ)
1312ad2antll 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℤ)
1413zred 12090 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ)
15 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
16 2z 12017 . . . . . . . . . . . . 13 2 ∈ ℤ
17 rpexpcl 13451 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
1815, 16, 17sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
1918rpred 12434 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ)
2019adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ)
21 simprl 769 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℕ)
2221nnrpd 12432 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ+)
2314, 20, 22lemuldivd 12483 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
2421nnred 11655 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
2515rprege0d 12441 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 flge0nn0 13193 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
27 nn0p1nn 11939 . . . . . . . . . . . . . 14 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
2825, 26, 273syl 18 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
2928adantr 483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℕ)
30 simprr 771 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))
31 eluznn 12321 . . . . . . . . . . . 12 ((((⌊‘𝑥) + 1) ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
3229, 30, 31syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℕ)
3332nnrpd 12432 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑚 ∈ ℝ+)
3424, 20, 33lemuldiv2d 12484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 · 𝑑) ≤ (𝑥↑2) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
3523, 34bitr3d 283 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
36 rpcn 12402 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
3736adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
3837sqvald 13510 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) = (𝑥 · 𝑥))
3938adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) = (𝑥 · 𝑥))
40 simplr 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ+)
4140rpred 12434 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ∈ ℝ)
42 reflcl 13169 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
43 peano2re 10815 . . . . . . . . . . . . . . . 16 ((⌊‘𝑥) ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
4441, 42, 433syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ∈ ℝ)
45 fllep1 13174 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
4641, 45syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥 ≤ ((⌊‘𝑥) + 1))
47 eluzle 12259 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4847ad2antll 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((⌊‘𝑥) + 1) ≤ 𝑚)
4941, 44, 14, 46, 48letrd 10799 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑥𝑚)
5041, 14, 40lemul1d 12477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥𝑚 ↔ (𝑥 · 𝑥) ≤ (𝑚 · 𝑥)))
5149, 50mpbid 234 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥 · 𝑥) ≤ (𝑚 · 𝑥))
5239, 51eqbrtrd 5090 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ≤ (𝑚 · 𝑥))
5320, 41, 33ledivmuld 12487 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (((𝑥↑2) / 𝑚) ≤ 𝑥 ↔ (𝑥↑2) ≤ (𝑚 · 𝑥)))
5452, 53mpbird 259 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ≤ 𝑥)
55 nnre 11647 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
5655ad2antrl 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 𝑑 ∈ ℝ)
5720, 32nndivred 11694 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑚) ∈ ℝ)
58 letr 10736 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ ∧ ((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
5956, 57, 41, 58syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ≤ ((𝑥↑2) / 𝑚) ∧ ((𝑥↑2) / 𝑚) ≤ 𝑥) → 𝑑𝑥))
6054, 59mpan2d 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑑𝑥))
6135, 60sylbid 242 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑑𝑥))
6261pm4.71rd 565 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
63 nnge1 11668 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
6463ad2antrl 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → 1 ≤ 𝑑)
65 1re 10643 . . . . . . . . . . . . . . 15 1 ∈ ℝ
66 0lt1 11164 . . . . . . . . . . . . . . 15 0 < 1
6765, 66pm3.2i 473 . . . . . . . . . . . . . 14 (1 ∈ ℝ ∧ 0 < 1)
6822rpregt0d 12440 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ ℝ ∧ 0 < 𝑑))
6918adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℝ+)
7069rpregt0d 12440 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2)))
71 lediv2 11532 . . . . . . . . . . . . . 14 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑑 ∈ ℝ ∧ 0 < 𝑑) ∧ ((𝑥↑2) ∈ ℝ ∧ 0 < (𝑥↑2))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7267, 68, 70, 71mp3an2i 1462 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (1 ≤ 𝑑 ↔ ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1)))
7364, 72mpbid 234 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ ((𝑥↑2) / 1))
7420recnd 10671 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑥↑2) ∈ ℂ)
7574div1d 11410 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 1) = (𝑥↑2))
7673, 75breqtrd 5094 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ≤ (𝑥↑2))
77 simpl 485 . . . . . . . . . . . . 13 ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → 𝑑 ∈ ℕ)
78 nndivre 11681 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((𝑥↑2) / 𝑑) ∈ ℝ)
7919, 77, 78syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑥↑2) / 𝑑) ∈ ℝ)
80 letr 10736 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ ((𝑥↑2) / 𝑑) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8114, 79, 20, 80syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ≤ ((𝑥↑2) / 𝑑) ∧ ((𝑥↑2) / 𝑑) ≤ (𝑥↑2)) → 𝑚 ≤ (𝑥↑2)))
8276, 81mpan2d 692 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) → 𝑚 ≤ (𝑥↑2)))
8335, 82sylbird 262 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) → 𝑚 ≤ (𝑥↑2)))
8483pm4.71rd 565 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ≤ ((𝑥↑2) / 𝑚) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
8535, 62, 843bitr3d 311 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑)) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
86 fznnfl 13233 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
8786baibd 542 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8841, 21, 87syl2anc 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ 𝑑𝑥))
8979flcld 13171 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ)
90 elfz5 12903 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9130, 89, 90syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
92 flge 13178 . . . . . . . . . 10 ((((𝑥↑2) / 𝑑) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9379, 13, 92syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ ((𝑥↑2) / 𝑑) ↔ 𝑚 ≤ (⌊‘((𝑥↑2) / 𝑑))))
9491, 93bitr4d 284 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ↔ 𝑚 ≤ ((𝑥↑2) / 𝑑)))
9588, 94anbi12d 632 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑑𝑥𝑚 ≤ ((𝑥↑2) / 𝑑))))
9620flcld 13171 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (⌊‘(𝑥↑2)) ∈ ℤ)
97 elfz5 12903 . . . . . . . . . 10 ((𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)) ∧ (⌊‘(𝑥↑2)) ∈ ℤ) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
9830, 96, 97syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
99 flge 13178 . . . . . . . . . 10 (((𝑥↑2) ∈ ℝ ∧ 𝑚 ∈ ℤ) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10020, 13, 99syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ≤ (𝑥↑2) ↔ 𝑚 ≤ (⌊‘(𝑥↑2))))
10198, 100bitr4d 284 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ↔ 𝑚 ≤ (𝑥↑2)))
102 fznnfl 13233 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ (𝑑 ∈ ℕ ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
103102baibd 542 . . . . . . . . 9 ((((𝑥↑2) / 𝑚) ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
10457, 21, 103syl2anc 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) ↔ 𝑑 ≤ ((𝑥↑2) / 𝑚)))
105101, 104anbi12d 632 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) ↔ (𝑚 ≤ (𝑥↑2) ∧ 𝑑 ≤ ((𝑥↑2) / 𝑚))))
10685, 95, 1053bitr4d 313 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1)))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
107106ex 415 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ ℕ ∧ 𝑚 ∈ (ℤ‘((⌊‘𝑥) + 1))) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))))))
1087, 11, 107pm5.21ndd 383 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) ↔ (𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))))))
109 ssun2 4151 . . . . . . . 8 (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))
11028adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ ℕ)
111 nnuz 12284 . . . . . . . . . 10 ℕ = (ℤ‘1)
112110, 111eleqtrdi 2925 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
113 dchrisum0lem1a 26064 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ≤ ((𝑥↑2) / 𝑑) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))))
114113simprd 498 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥)))
115 fzsplit2 12935 . . . . . . . . 9 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘((𝑥↑2) / 𝑑)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
116112, 114, 115syl2anc 586 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑑))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))))
117109, 116sseqtrrid 4022 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))) ⊆ (1...(⌊‘((𝑥↑2) / 𝑑))))
118117sselda 3969 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))))
119 rpvmasum2.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
120 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
121 rpvmasum2.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
122 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
123 rpvmasum2.w . . . . . . . . . . . . 13 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
124123ssrab3 4059 . . . . . . . . . . . 12 𝑊 ⊆ (𝐷 ∖ { 1 })
125 dchrisum0.b . . . . . . . . . . . 12 (𝜑𝑋𝑊)
126124, 125sseldi 3967 . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
127126eldifad 3950 . . . . . . . . . 10 (𝜑𝑋𝐷)
128127ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑋𝐷)
129 elfzelz 12911 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℤ)
130129adantl 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℤ)
131119, 120, 121, 122, 128, 130dchrzrhcl 25823 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
132 elfznn 12939 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑))) → 𝑚 ∈ ℕ)
133132adantl 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℕ)
134133nnrpd 12432 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → 𝑚 ∈ ℝ+)
135134rpsqrtcld 14773 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℝ+)
136135rpcnd 12436 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ∈ ℂ)
137135rpne0d 12439 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑚) ≠ 0)
138131, 136, 137divcld 11418 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
1394adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
140139nnrpd 12432 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
141140rpsqrtcld 14773 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℝ+)
142141rpcnne0d 12443 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
143142adantr 483 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
144143simpld 497 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ∈ ℂ)
145143simprd 498 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (√‘𝑑) ≠ 0)
146138, 144, 145divcld 11418 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
147118, 146syldan 593 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
148147anasss 469 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑))))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1491, 2, 3, 108, 148fsumcom2 15131 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
150149mpteq2dva 5163 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
15165a1i 11 . . 3 (𝜑 → 1 ∈ ℝ)
152 2cn 11715 . . . . . . . 8 2 ∈ ℂ
15315rpsqrtcld 14773 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
154153rpcnd 12436 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
155 mulcl 10623 . . . . . . . 8 ((2 ∈ ℂ ∧ (√‘𝑥) ∈ ℂ) → (2 · (√‘𝑥)) ∈ ℂ)
156152, 154, 155sylancr 589 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℂ)
157141rprecred 12445 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℝ)
1581, 157fsumrecl 15093 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℝ)
159158recnd 10671 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) ∈ ℂ)
160159, 156subcld 10999 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) ∈ ℂ)
161 2re 11714 . . . . . . . . . . 11 2 ∈ ℝ
162 dchrisum0.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (0[,)+∞))
163 elrege0 12845 . . . . . . . . . . . . 13 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
164162, 163sylib 220 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165164simpld 497 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
166 remulcl 10624 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (2 · 𝐶) ∈ ℝ)
167161, 165, 166sylancr 589 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℝ)
168167adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℝ)
169168, 153rerpdivcld 12465 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
170169recnd 10671 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
171156, 160, 170adddird 10668 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
172156, 159pncan3d 11002 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)))
173172oveq1d 7173 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) · ((2 · 𝐶) / (√‘𝑥))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
174 2cnd 11718 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
175174, 154, 170mulassd 10666 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))))
176168recnd 10671 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝐶) ∈ ℂ)
177153rpne0d 12439 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (√‘𝑥) ≠ 0)
178176, 154, 177divcan2d 11420 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥))) = (2 · 𝐶))
179178oveq2d 7174 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (2 · ((√‘𝑥) · ((2 · 𝐶) / (√‘𝑥)))) = (2 · (2 · 𝐶)))
180175, 179eqtrd 2858 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) = (2 · (2 · 𝐶)))
181180oveq1d 7173 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (((2 · (√‘𝑥)) · ((2 · 𝐶) / (√‘𝑥))) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
182171, 173, 1813eqtr3d 2866 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))))
183182mpteq2dva 5163 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))))
184 remulcl 10624 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · 𝐶) ∈ ℝ) → (2 · (2 · 𝐶)) ∈ ℝ)
185161, 167, 184sylancr 589 . . . . . . 7 (𝜑 → (2 · (2 · 𝐶)) ∈ ℝ)
186185recnd 10671 . . . . . 6 (𝜑 → (2 · (2 · 𝐶)) ∈ ℂ)
187186adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · (2 · 𝐶)) ∈ ℂ)
188160, 170mulcld 10663 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
189 rpssre 12399 . . . . . 6 + ⊆ ℝ
190 o1const 14978 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (2 · (2 · 𝐶)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
191189, 186, 190sylancr 589 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (2 · 𝐶))) ∈ 𝑂(1))
192 eqid 2823 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))))
193192divsqrsum 25561 . . . . . . 7 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟
194 rlimdmo1 14976 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ dom ⇝𝑟 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
195193, 194mp1i 13 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥)))) ∈ 𝑂(1))
196176, 154, 177divrecd 11421 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝐶) / (√‘𝑥)) = ((2 · 𝐶) · (1 / (√‘𝑥))))
197196mpteq2dva 5163 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))))
198153rprecred 12445 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
199167recnd 10671 . . . . . . . . . 10 (𝜑 → (2 · 𝐶) ∈ ℂ)
200 rlimconst 14903 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ (2 · 𝐶) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
201189, 199, 200sylancr 589 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · 𝐶)) ⇝𝑟 (2 · 𝐶))
202 sqrtlim 25552 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
203202a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
204168, 198, 201, 203rlimmul 15003 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) · (1 / (√‘𝑥)))) ⇝𝑟 ((2 · 𝐶) · 0))
205197, 204eqbrtrd 5090 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0))
206 rlimo1 14975 . . . . . . 7 ((𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ⇝𝑟 ((2 · 𝐶) · 0) → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
207205, 206syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · 𝐶) / (√‘𝑥))) ∈ 𝑂(1))
208160, 170, 195, 207o1mul2 14983 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
209187, 188, 191, 208o1add2 14982 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · (2 · 𝐶)) + ((Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) − (2 · (√‘𝑥))) · ((2 · 𝐶) / (√‘𝑥))))) ∈ 𝑂(1))
210183, 209eqeltrd 2915 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ 𝑂(1))
211158, 169remulcld 10673 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
2123, 147fsumcl 15092 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
2131, 212fsumcl 15092 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
214213abscld 14798 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
215211recnd 10671 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℂ)
216215abscld 14798 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))) ∈ ℝ)
217212abscld 14798 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2181, 217fsumrecl 15093 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ ℝ)
2191, 212fsumabs 15158 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
220169adantr 483 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℝ)
221157, 220remulcld 10673 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ∈ ℝ)
222118, 138syldan 593 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
2233, 222fsumcl 15092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
224223abscld 14798 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ∈ ℝ)
225 rpvmasum.a . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
226 rpvmasum2.1 . . . . . . . . . . 11 1 = (0g𝐺)
227 dchrisum0lem1.f . . . . . . . . . . 11 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
228 dchrisum0.s . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
229 dchrisum0.1 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
230120, 122, 225, 119, 121, 226, 123, 125, 227, 162, 228, 229dchrisum0lem1b 26093 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) ≤ ((2 · 𝐶) / (√‘𝑥)))
231224, 220, 141, 230lediv1dd 12492 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) ≤ (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)))
232141rpcnd 12436 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ∈ ℂ)
233141rpne0d 12439 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (√‘𝑑) ≠ 0)
234223, 232, 233absdivd 14817 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))))
2353, 232, 222, 233fsumdivc 15143 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
236235fveq2d 6676 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
237141rprege0d 12441 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)))
238 absid 14658 . . . . . . . . . . . 12 (((√‘𝑑) ∈ ℝ ∧ 0 ≤ (√‘𝑑)) → (abs‘(√‘𝑑)) = (√‘𝑑))
239237, 238syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(√‘𝑑)) = (√‘𝑑))
240239oveq2d 7174 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (abs‘(√‘𝑑))) = ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)))
241234, 236, 2403eqtr3rd 2867 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))((𝑋‘(𝐿𝑚)) / (√‘𝑚))) / (√‘𝑑)) = (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
242170adantr 483 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((2 · 𝐶) / (√‘𝑥)) ∈ ℂ)
243242, 232, 233divrec2d 11422 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((2 · 𝐶) / (√‘𝑥)) / (√‘𝑑)) = ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
244231, 241, 2433brtr3d 5099 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ ((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
2451, 217, 221, 244fsumle 15156 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
246157recnd 10671 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / (√‘𝑑)) ∈ ℂ)
2471, 170, 246fsummulc1 15142 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
248245, 247breqtrrd 5096 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
249214, 218, 211, 219, 248letrd 10799 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))))
250211leabsd 14776 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
251214, 211, 216, 249, 250letrd 10799 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
252251adantrr 715 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ≤ (abs‘(Σ𝑑 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑑)) · ((2 · 𝐶) / (√‘𝑥)))))
253151, 210, 211, 213, 252o1le 15011 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘((𝑥↑2) / 𝑑)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
254150, 253eqeltrrd 2916 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  cdif 3935  cun 3936  wss 3938  {csn 4569   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  [,)cico 12743  ...cfz 12895  cfl 13163  seqcseq 13372  cexp 13432  csqrt 14594  abscabs 14595  cli 14843  𝑟 crli 14844  𝑂(1)co1 14845  Σcsu 15044  Basecbs 16485  0gc0g 16715  ℤRHomczrh 20649  ℤ/nczn 20652  DChrcdchr 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-o1 14849  df-lo1 14850  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-qus 16784  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-nsg 18279  df-eqg 18280  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-zring 20620  df-zrh 20653  df-zn 20656  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-dchr 25811
This theorem is referenced by:  dchrisum0lem3  26097
  Copyright terms: Public domain W3C validator