MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1a Structured version   Visualization version   GIF version

Theorem dchrisum0lem1a 26056
Description: Lemma for dchrisum0lem1 26086. (Contributed by Mario Carneiro, 7-Jun-2016.)
Assertion
Ref Expression
dchrisum0lem1a (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))

Proof of Theorem dchrisum0lem1a
StepHypRef Expression
1 elfznn 12930 . . . . . . 7 (𝐷 ∈ (1...(⌊‘𝑋)) → 𝐷 ∈ ℕ)
21adantl 484 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℕ)
32nnred 11647 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ)
4 simpr 487 . . . . . . . 8 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ+)
54rpregt0d 12431 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
65adantr 483 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ∈ ℝ ∧ 0 < 𝑋))
76simpld 497 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ)
84adantr 483 . . . . . 6 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ∈ ℝ+)
98rpge0d 12429 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 0 ≤ 𝑋)
104rpred 12425 . . . . . . 7 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℝ)
11 fznnfl 13224 . . . . . . 7 (𝑋 ∈ ℝ → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1210, 11syl 17 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝐷 ∈ (1...(⌊‘𝑋)) ↔ (𝐷 ∈ ℕ ∧ 𝐷𝑋)))
1312simplbda 502 . . . . 5 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷𝑋)
143, 7, 7, 9, 13lemul2ad 11574 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋 · 𝑋))
15 rpcn 12393 . . . . . . 7 (𝑋 ∈ ℝ+𝑋 ∈ ℂ)
1615adantl 484 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → 𝑋 ∈ ℂ)
1716sqvald 13501 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) = (𝑋 · 𝑋))
1817adantr 483 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) = (𝑋 · 𝑋))
1914, 18breqtrrd 5087 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 · 𝐷) ≤ (𝑋↑2))
20 2z 12008 . . . . . . 7 2 ∈ ℤ
21 rpexpcl 13442 . . . . . . 7 ((𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑋↑2) ∈ ℝ+)
224, 20, 21sylancl 588 . . . . . 6 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ+)
2322rpred 12425 . . . . 5 ((𝜑𝑋 ∈ ℝ+) → (𝑋↑2) ∈ ℝ)
2423adantr 483 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋↑2) ∈ ℝ)
252nnrpd 12423 . . . 4 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝐷 ∈ ℝ+)
267, 24, 25lemuldivd 12474 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋 · 𝐷) ≤ (𝑋↑2) ↔ 𝑋 ≤ ((𝑋↑2) / 𝐷)))
2719, 26mpbid 234 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → 𝑋 ≤ ((𝑋↑2) / 𝐷))
28 nndivre 11672 . . . 4 (((𝑋↑2) ∈ ℝ ∧ 𝐷 ∈ ℕ) → ((𝑋↑2) / 𝐷) ∈ ℝ)
2923, 1, 28syl2an 597 . . 3 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → ((𝑋↑2) / 𝐷) ∈ ℝ)
30 flword2 13177 . . 3 ((𝑋 ∈ ℝ ∧ ((𝑋↑2) / 𝐷) ∈ ℝ ∧ 𝑋 ≤ ((𝑋↑2) / 𝐷)) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
317, 29, 27, 30syl3anc 1367 . 2 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋)))
3227, 31jca 514 1 (((𝜑𝑋 ∈ ℝ+) ∧ 𝐷 ∈ (1...(⌊‘𝑋))) → (𝑋 ≤ ((𝑋↑2) / 𝐷) ∧ (⌊‘((𝑋↑2) / 𝐷)) ∈ (ℤ‘(⌊‘𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110   class class class wbr 5059  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670   / cdiv 11291  cn 11632  2c2 11686  cz 11975  cuz 12237  +crp 12383  ...cfz 12886  cfl 13154  cexp 13423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-seq 13364  df-exp 13424
This theorem is referenced by:  dchrisum0lem1b  26085  dchrisum0lem1  26086
  Copyright terms: Public domain W3C validator