MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2 Structured version   Visualization version   GIF version

Theorem dchrisum0lem2 26021
Description: Lemma for dchrisum0 26023. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
dchrisum0lem2.h 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
dchrisum0lem2.u (𝜑𝐻𝑟 𝑈)
dchrisum0lem2.k 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisum0lem2.e (𝜑𝐸 ∈ (0[,)+∞))
dchrisum0lem2.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrisum0lem2.3 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
Assertion
Ref Expression
dchrisum0lem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝐸,𝑑,𝑚,𝑥,𝑦   𝑚,𝐾,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥,𝑦   𝑆,𝑑,𝑚,𝑥,𝑦   𝑈,𝑚,𝑥   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   𝑇(𝑎)   𝑈(𝑦,𝑎,𝑑)   1 (𝑎,𝑑)   𝐸(𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐻(𝑥,𝑦,𝑚,𝑎,𝑑)   𝐾(𝑥,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem2
StepHypRef Expression
1 2cnd 11703 . . 3 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
2 rpcn 12387 . . . . 5 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
32adantl 482 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
4 fzfid 13329 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
5 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
6 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
8 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
9 rpvmasum2.w . . . . . . . . . . 11 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
109ssrab3 4054 . . . . . . . . . 10 𝑊 ⊆ (𝐷 ∖ { 1 })
11 dchrisum0.b . . . . . . . . . 10 (𝜑𝑋𝑊)
1210, 11sseldi 3962 . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1312eldifad 3945 . . . . . . . 8 (𝜑𝑋𝐷)
1413ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
15 elfzelz 12896 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℤ)
1615adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℤ)
175, 6, 7, 8, 14, 16dchrzrhcl 25748 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
18 elfznn 12924 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
1918nnrpd 12417 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℝ+)
2019adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
2120rpcnd 12421 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℂ)
2220rpne0d 12424 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ≠ 0)
2317, 21, 22divcld 11404 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
244, 23fsumcl 15078 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
253, 24mulcld 10649 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
26 rpssre 12384 . . . . 5 + ⊆ ℝ
27 2cn 11700 . . . . 5 2 ∈ ℂ
28 o1const 14964 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
2926, 27, 28mp2an 688 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
3029a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
3126a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
32 1red 10630 . . . 4 (𝜑 → 1 ∈ ℝ)
33 dchrisum0lem2.e . . . . 5 (𝜑𝐸 ∈ (0[,)+∞))
34 elrege0 12830 . . . . . 6 (𝐸 ∈ (0[,)+∞) ↔ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸))
3534simplbi 498 . . . . 5 (𝐸 ∈ (0[,)+∞) → 𝐸 ∈ ℝ)
3633, 35syl 17 . . . 4 (𝜑𝐸 ∈ ℝ)
373, 24absmuld 14802 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
38 rprege0 12392 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
3938adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
40 absid 14644 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
4139, 40syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘𝑥) = 𝑥)
4241oveq1d 7160 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((abs‘𝑥) · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4337, 42eqtrd 2853 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4443adantrr 713 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
4524adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
4645subid1d 10974 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))
4718adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
48 2fveq3 6668 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
49 id 22 . . . . . . . . . . . . . . 15 (𝑎 = 𝑚𝑎 = 𝑚)
5048, 49oveq12d 7163 . . . . . . . . . . . . . 14 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
51 dchrisum0lem2.k . . . . . . . . . . . . . 14 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
52 ovex 7178 . . . . . . . . . . . . . 14 ((𝑋‘(𝐿𝑎)) / 𝑎) ∈ V
5350, 51, 52fvmpt3i 6766 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5447, 53syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5554adantlrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐾𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
56 rpregt0 12391 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5756ad2antrl 724 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
5857simpld 495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
59 simprr 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
60 flge1nn 13179 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
6158, 59, 60syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
62 nnuz 12269 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6361, 62eleqtrdi 2920 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
6423adantlrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
6555, 63, 64fsumser 15075 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
66 rpvmasum.a . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
67 rpvmasum2.1 . . . . . . . . . . . . . 14 1 = (0g𝐺)
68 eldifsni 4714 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
6912, 68syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋1 )
70 dchrisum0lem2.t . . . . . . . . . . . . . 14 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
71 dchrisum0lem2.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
726, 8, 66, 5, 7, 67, 13, 69, 51, 33, 70, 71, 9dchrvmaeq0 26007 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑊𝑇 = 0))
7311, 72mpbid 233 . . . . . . . . . . . 12 (𝜑𝑇 = 0)
7473adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 = 0)
7574eqcomd 2824 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 = 𝑇)
7665, 75oveq12d 7163 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) − 0) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7746, 76eqtr3d 2855 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚) = ((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇))
7877fveq2d 6667 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
79 2fveq3 6668 . . . . . . . . . 10 (𝑦 = 𝑥 → (seq1( + , 𝐾)‘(⌊‘𝑦)) = (seq1( + , 𝐾)‘(⌊‘𝑥)))
8079fvoveq1d 7167 . . . . . . . . 9 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)))
81 oveq2 7153 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐸 / 𝑦) = (𝐸 / 𝑥))
8280, 81breq12d 5070 . . . . . . . 8 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦) ↔ (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥)))
8371adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 / 𝑦))
84 1re 10629 . . . . . . . . . 10 1 ∈ ℝ
85 elicopnf 12821 . . . . . . . . . 10 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
8684, 85ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
8758, 59, 86sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ (1[,)+∞))
8882, 83, 87rspcdva 3622 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((seq1( + , 𝐾)‘(⌊‘𝑥)) − 𝑇)) ≤ (𝐸 / 𝑥))
8978, 88eqbrtrd 5079 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥))
9045abscld 14784 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ)
9136adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐸 ∈ ℝ)
92 lemuldiv2 11509 . . . . . . 7 (((abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9390, 91, 57, 92syl3anc 1363 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸 ↔ (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ≤ (𝐸 / 𝑥)))
9489, 93mpbird 258 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · (abs‘Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
9544, 94eqbrtrd 5079 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ≤ 𝐸)
9631, 25, 32, 36, 95elo1d 14881 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ 𝑂(1))
971, 25, 30, 96o1mul2 14969 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1))
98 fzfid 13329 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
9920rpsqrtcld 14759 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℝ+)
10099rpcnd 12421 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ∈ ℂ)
10199rpne0d 12424 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘𝑚) ≠ 0)
10217, 100, 101divcld 11404 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
103102adantr 481 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘𝑚)) ∈ ℂ)
104 elfznn 12924 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
105104adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
106105nnrpd 12417 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
107106rpsqrtcld 14759 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
108107rpcnd 12421 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℂ)
109107rpne0d 12424 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ≠ 0)
110103, 108, 109divcld 11404 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
11198, 110fsumcl 15078 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
1124, 111fsumcl 15078 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
113 mulcl 10609 . . . 4 ((2 ∈ ℂ ∧ (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
11427, 25, 113sylancr 587 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) ∈ ℂ)
115 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
116 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
117 2z 12002 . . . . . . . . . . . . . 14 2 ∈ ℤ
118 rpexpcl 13436 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
119116, 117, 118sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
120 rpdivcl 12402 . . . . . . . . . . . . 13 (((𝑥↑2) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
121119, 19, 120syl2an 595 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) / 𝑚) ∈ ℝ+)
122121rpsqrtcld 14759 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ+)
123122rpred 12419 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) ∈ ℝ)
124 remulcl 10610 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (√‘((𝑥↑2) / 𝑚)) ∈ ℝ) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
125115, 123, 124sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℝ)
126125recnd 10657 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) ∈ ℂ)
127102, 126mulcld 10649 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) ∈ ℂ)
1284, 111, 127fsumsub 15131 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
129107rpcnne0d 12428 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
130 reccl 11293 . . . . . . . . . . 11 (((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0) → (1 / (√‘𝑑)) ∈ ℂ)
131129, 130syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (1 / (√‘𝑑)) ∈ ℂ)
13298, 131fsumcl 15078 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) ∈ ℂ)
133102, 132, 126subdid 11084 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
134 fveq2 6663 . . . . . . . . . . . . . 14 (𝑦 = ((𝑥↑2) / 𝑚) → (⌊‘𝑦) = (⌊‘((𝑥↑2) / 𝑚)))
135134oveq2d 7161 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (1...(⌊‘𝑦)) = (1...(⌊‘((𝑥↑2) / 𝑚))))
136135sumeq1d 15046 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)))
137 fveq2 6663 . . . . . . . . . . . . 13 (𝑦 = ((𝑥↑2) / 𝑚) → (√‘𝑦) = (√‘((𝑥↑2) / 𝑚)))
138137oveq2d 7161 . . . . . . . . . . . 12 (𝑦 = ((𝑥↑2) / 𝑚) → (2 · (√‘𝑦)) = (2 · (√‘((𝑥↑2) / 𝑚))))
139136, 138oveq12d 7163 . . . . . . . . . . 11 (𝑦 = ((𝑥↑2) / 𝑚) → (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
140 dchrisum0lem2.h . . . . . . . . . . 11 𝐻 = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
141 ovex 7178 . . . . . . . . . . 11 𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))) ∈ V
142139, 140, 141fvmpt3i 6766 . . . . . . . . . 10 (((𝑥↑2) / 𝑚) ∈ ℝ+ → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
143121, 142syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝐻‘((𝑥↑2) / 𝑚)) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚)))))
144143oveq2d 7161 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑)) − (2 · (√‘((𝑥↑2) / 𝑚))))))
145103, 108, 109divrecd 11407 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
146145sumeq2dv 15048 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
14798, 102, 131fsummulc2 15127 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (1 / (√‘𝑑))))
148146, 147eqtr4d 2856 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))))
149148oveq1d 7160 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))) = ((((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(1 / (√‘𝑑))) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
150133, 144, 1493eqtr4d 2863 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
151150sumeq2dv 15048 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
152 mulcl 10609 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
15327, 3, 152sylancr 587 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (2 · 𝑥) ∈ ℂ)
1544, 153, 23fsummulc2 15127 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
1551, 3, 24mulassd 10652 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((2 · 𝑥) · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)) = (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))
156153adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · 𝑥) ∈ ℂ)
157156, 102, 100, 101div12d 11440 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
15899rpcnne0d 12428 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
159 divdiv1 11339 . . . . . . . . . . . . 13 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16017, 158, 158, 159syl3anc 1363 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))))
16120rprege0d 12426 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
162 remsqsqrt 14604 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
163161, 162syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘𝑚) · (√‘𝑚)) = 𝑚)
164163oveq2d 7161 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑚))) = ((𝑋‘(𝐿𝑚)) / 𝑚))
165160, 164eqtr2d 2854 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑚)) / 𝑚) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚)))
166165oveq2d 7161 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((2 · 𝑥) · (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑚))))
167119adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥↑2) ∈ ℝ+)
168167rprege0d 12426 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)))
169 sqrtdiv 14613 . . . . . . . . . . . . . . 15 ((((𝑥↑2) ∈ ℝ ∧ 0 ≤ (𝑥↑2)) ∧ 𝑚 ∈ ℝ+) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
170168, 20, 169syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = ((√‘(𝑥↑2)) / (√‘𝑚)))
17138ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
172 sqrtsq 14617 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘(𝑥↑2)) = 𝑥)
173171, 172syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘(𝑥↑2)) = 𝑥)
174173oveq1d 7160 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((√‘(𝑥↑2)) / (√‘𝑚)) = (𝑥 / (√‘𝑚)))
175170, 174eqtrd 2853 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (√‘((𝑥↑2) / 𝑚)) = (𝑥 / (√‘𝑚)))
176175oveq2d 7161 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = (2 · (𝑥 / (√‘𝑚))))
177 2cnd 11703 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1783adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
179 divass 11304 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0)) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
180177, 178, 158, 179syl3anc 1363 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) / (√‘𝑚)) = (2 · (𝑥 / (√‘𝑚))))
181176, 180eqtr4d 2856 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (2 · (√‘((𝑥↑2) / 𝑚))) = ((2 · 𝑥) / (√‘𝑚)))
182181oveq2d 7161 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · ((2 · 𝑥) / (√‘𝑚))))
183157, 166, 1823eqtr4d 2863 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
184183sumeq2dv 15048 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))((2 · 𝑥) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
185154, 155, 1843eqtr3d 2861 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚)))))
186185oveq2d 7161 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (2 · (√‘((𝑥↑2) / 𝑚))))))
187128, 151, 1863eqtr4d 2863 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))))
188187mpteq2dva 5152 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))))
189 dchrisum0lem1.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
190 dchrisum0.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
191 dchrisum0.s . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
192 dchrisum0.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
193 dchrisum0lem2.u . . . . 5 (𝜑𝐻𝑟 𝑈)
1946, 8, 66, 5, 7, 67, 9, 11, 189, 190, 191, 192, 140, 193dchrisum0lem2a 26020 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) · (𝐻‘((𝑥↑2) / 𝑚)))) ∈ 𝑂(1))
195188, 194eqeltrrd 2911 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) − (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚))))) ∈ 𝑂(1))
196112, 114, 195o1dif 14974 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (2 · (𝑥 · Σ𝑚 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑚)) / 𝑚)))) ∈ 𝑂(1)))
19797, 196mpbird 258 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  {crab 3139  cdif 3930  wss 3933  {csn 4557   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  cz 11969  cuz 12231  +crp 12377  [,)cico 12728  ...cfz 12880  cfl 13148  seqcseq 13357  cexp 13417  csqrt 14580  abscabs 14581  cli 14829  𝑟 crli 14830  𝑂(1)co1 14831  Σcsu 15030  Basecbs 16471  0gc0g 16701  ℤRHomczrh 20575  ℤ/nczn 20578  DChrcdchr 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-o1 14835  df-lo1 14836  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-dvds 15596  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-qus 16770  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-nsg 18215  df-eqg 18216  df-ghm 18294  df-cntz 18385  df-od 18585  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rsp 19876  df-2idl 19933  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-zring 20546  df-zrh 20579  df-zn 20582  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-cxp 25068  df-dchr 25736
This theorem is referenced by:  dchrisum0lem3  26022
  Copyright terms: Public domain W3C validator