MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Visualization version   GIF version

Theorem dchrisum0lem3 26094
Description: Lemma for dchrisum0 26095. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
dchrisum0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisum0.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrisum0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
Assertion
Ref Expression
dchrisum0lem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦, 1   𝑚,𝑑,𝑥,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦   𝜑,𝑑,𝑚,𝑥   𝑆,𝑑,𝑚,𝑥,𝑦   𝑥,𝑊   𝑚,𝑍,𝑥,𝑦   𝐷,𝑚,𝑥,𝑦   𝐿,𝑎,𝑑,𝑚,𝑥,𝑦   𝑋,𝑎,𝑑,𝑚,𝑥,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑆(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑚,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑊(𝑦,𝑚,𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrisum0lem3
Dummy variables 𝑐 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10641 . 2 (𝜑 → 1 ∈ ℝ)
2 sumex 15043 . . . 4 Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V
32a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V)
4 sumex 15043 . . . 4 Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V
54a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ V)
6 rpvmasum.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
7 rpvmasum.l . . . . 5 𝐿 = (ℤRHom‘𝑍)
8 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
9 rpvmasum2.g . . . . 5 𝐺 = (DChr‘𝑁)
10 rpvmasum2.d . . . . 5 𝐷 = (Base‘𝐺)
11 rpvmasum2.1 . . . . 5 1 = (0g𝐺)
12 rpvmasum2.w . . . . . . . 8 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
1312ssrab3 4056 . . . . . . 7 𝑊 ⊆ (𝐷 ∖ { 1 })
14 difss 4107 . . . . . . 7 (𝐷 ∖ { 1 }) ⊆ 𝐷
1513, 14sstri 3975 . . . . . 6 𝑊𝐷
16 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
1715, 16sseldi 3964 . . . . 5 (𝜑𝑋𝐷)
1813, 16sseldi 3964 . . . . . 6 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
19 eldifsni 4721 . . . . . 6 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
2018, 19syl 17 . . . . 5 (𝜑𝑋1 )
21 eqid 2821 . . . . 5 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
226, 7, 8, 9, 10, 11, 17, 20, 21dchrmusumlema 26068 . . . 4 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
238adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
2416adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
25 dchrisum0lem1.f . . . . . . 7 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
26 dchrisum0.c . . . . . . . 8 (𝜑𝐶 ∈ (0[,)+∞))
2726adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝐶 ∈ (0[,)+∞))
28 dchrisum0.s . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
2928adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , 𝐹) ⇝ 𝑆)
30 dchrisum0.1 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
3130adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / (√‘𝑦)))
32 eqid 2821 . . . . . . 7 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) = (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))
3332divsqrsum 25558 . . . . . . . . 9 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ∈ dom ⇝𝑟
3432divsqrsumf 25557 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℝ
35 ax-resscn 10593 . . . . . . . . . . . 12 ℝ ⊆ ℂ
36 fss 6526 . . . . . . . . . . . 12 (((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ)
3734, 35, 36mp2an 690 . . . . . . . . . . 11 (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ
3837a1i 11 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))):ℝ+⟶ℂ)
39 rpsup 13233 . . . . . . . . . . 11 sup(ℝ+, ℝ*, < ) = +∞
4039a1i 11 . . . . . . . . . 10 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
4138, 40rlimdm 14907 . . . . . . . . 9 (𝜑 → ((𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ∈ dom ⇝𝑟 ↔ (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))))))
4233, 41mpbii 235 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))))
4342adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦)))) ⇝𝑟 ( ⇝𝑟 ‘(𝑦 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑦))(1 / (√‘𝑑)) − (2 · (√‘𝑦))))))
44 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
45 simprrl 779 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
46 simprrr 780 . . . . . . 7 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
476, 7, 23, 9, 10, 11, 12, 24, 25, 27, 29, 31, 32, 43, 21, 44, 45, 46dchrisum0lem2 26093 . . . . . 6 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
4847rexlimdvaa 3285 . . . . 5 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)))
4948exlimdv 1930 . . . 4 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1)))
5022, 49mpd 15 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
516, 7, 8, 9, 10, 11, 12, 16, 25, 26, 28, 30dchrisum0lem1 26091 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ 𝑂(1))
523, 5, 50, 51o1add2 14979 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))) ∈ 𝑂(1))
53 ovexd 7190 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))) ∈ V)
54 fzfid 13340 . . 3 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘(𝑥↑2))) ∈ Fin)
55 fzfid 13340 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → (1...(⌊‘((𝑥↑2) / 𝑚))) ∈ Fin)
5617ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑋𝐷)
57 elfzelz 12907 . . . . . . . 8 (𝑚 ∈ (1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℤ)
5857adantl 484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℤ)
599, 6, 10, 7, 56, 58dchrzrhcl 25820 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
6059adantr 483 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
61 elfznn 12935 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘(𝑥↑2))) → 𝑚 ∈ ℕ)
6261adantl 484 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℕ)
6362nnrpd 12428 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → 𝑚 ∈ ℝ+)
64 elfznn 12935 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℕ)
6564nnrpd 12428 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚))) → 𝑑 ∈ ℝ+)
66 rpmulcl 12411 . . . . . . . 8 ((𝑚 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑚 · 𝑑) ∈ ℝ+)
6763, 65, 66syl2an 597 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 · 𝑑) ∈ ℝ+)
6867rpsqrtcld 14770 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈ ℝ+)
6968rpcnd 12432 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ∈ ℂ)
7068rpne0d 12435 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) ≠ 0)
7160, 69, 70divcld 11415 . . . 4 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7255, 71fsumcl 15089 . . 3 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7354, 72fsumcl 15089 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) ∈ ℂ)
7473abscld 14795 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ)
7574adantrr 715 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ ℝ)
7662adantr 483 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℕ)
7776nnrpd 12428 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑚 ∈ ℝ+)
7877rprege0d 12437 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
7964adantl 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℕ)
8079nnrpd 12428 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → 𝑑 ∈ ℝ+)
8180rprege0d 12437 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
82 sqrtmul 14618 . . . . . . . . . . 11 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑)) → (√‘(𝑚 · 𝑑)) = ((√‘𝑚) · (√‘𝑑)))
8378, 81, 82syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘(𝑚 · 𝑑)) = ((√‘𝑚) · (√‘𝑑)))
8483oveq2d 7171 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
8577rpsqrtcld 14770 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑚) ∈ ℝ+)
8685rpcnne0d 12439 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0))
8780rpsqrtcld 14770 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (√‘𝑑) ∈ ℝ+)
8887rpcnne0d 12439 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0))
89 divdiv1 11350 . . . . . . . . . 10 (((𝑋‘(𝐿𝑚)) ∈ ℂ ∧ ((√‘𝑚) ∈ ℂ ∧ (√‘𝑚) ≠ 0) ∧ ((√‘𝑑) ∈ ℂ ∧ (√‘𝑑) ≠ 0)) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
9060, 86, 88, 89syl3anc 1367 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = ((𝑋‘(𝐿𝑚)) / ((√‘𝑚) · (√‘𝑑))))
9184, 90eqtr4d 2859 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) ∧ 𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))) → ((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = (((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9291sumeq2dv 15059 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9392sumeq2dv 15059 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
9493adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))
95 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9695rpred 12430 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
97 reflcl 13165 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
9896, 97syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
9998ltp1d 11569 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) < ((⌊‘𝑥) + 1))
100 fzdisj 12933 . . . . . . . 8 ((⌊‘𝑥) < ((⌊‘𝑥) + 1) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
10199, 100syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
102101adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1...(⌊‘𝑥)) ∩ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))) = ∅)
10395rprege0d 12437 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
104 flge0nn0 13189 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
105 nn0p1nn 11935 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
106103, 104, 1053syl 18 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
107 nnuz 12280 . . . . . . . . 9 ℕ = (ℤ‘1)
108106, 107eleqtrdi 2923 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
109108adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
11096adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
111 2z 12013 . . . . . . . . . . 11 2 ∈ ℤ
112 rpexpcl 13447 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑥↑2) ∈ ℝ+)
11395, 111, 112sylancl 588 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥↑2) ∈ ℝ+)
114113adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) ∈ ℝ+)
115114rpred 12430 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) ∈ ℝ)
116110recnd 10668 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ)
117116mulid1d 10657 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥)
118 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
119 1red 10641 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ)
120 rpregt0 12402 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
121120ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
122 lemul2 11492 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥)))
123119, 110, 121, 122syl3anc 1367 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (𝑥 · 1) ≤ (𝑥 · 𝑥)))
124118, 123mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) ≤ (𝑥 · 𝑥))
125117, 124eqbrtrrd 5089 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ (𝑥 · 𝑥))
126116sqvald 13506 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥↑2) = (𝑥 · 𝑥))
127125, 126breqtrrd 5093 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ (𝑥↑2))
128 flword2 13182 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ 𝑥 ≤ (𝑥↑2)) → (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥)))
129110, 115, 127, 128syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥)))
130 fzsplit2 12931 . . . . . . 7 ((((⌊‘𝑥) + 1) ∈ (ℤ‘1) ∧ (⌊‘(𝑥↑2)) ∈ (ℤ‘(⌊‘𝑥))) → (1...(⌊‘(𝑥↑2))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))))
131109, 129, 130syl2anc 586 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(𝑥↑2))) = ((1...(⌊‘𝑥)) ∪ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))))
132 fzfid 13340 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(𝑥↑2))) ∈ Fin)
13392, 72eqeltrrd 2914 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
134133adantlrr 719 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(𝑥↑2)))) → Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) ∈ ℂ)
135102, 131, 132, 134fsumsplit 15096 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
13694, 135eqtrd 2856 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑))))
137136fveq2d 6673 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))))
13875, 137eqled 10742 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)) + Σ𝑚 ∈ (((⌊‘𝑥) + 1)...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))(((𝑋‘(𝐿𝑚)) / (√‘𝑚)) / (√‘𝑑)))))
1391, 52, 53, 73, 138o1le 15008 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑚 ∈ (1...(⌊‘(𝑥↑2)))Σ𝑑 ∈ (1...(⌊‘((𝑥↑2) / 𝑚)))((𝑋‘(𝐿𝑚)) / (√‘(𝑚 · 𝑑)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  {csn 4566   class class class wbr 5065  cmpt 5145  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  +crp 12388  [,)cico 12739  ...cfz 12891  cfl 13159  seqcseq 13368  cexp 13428  csqrt 14591  abscabs 14592  cli 14840  𝑟 crli 14841  𝑂(1)co1 14842  Σcsu 15041  Basecbs 16482  0gc0g 16712  ℤRHomczrh 20646  ℤ/nczn 20649  DChrcdchr 25807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-disj 5031  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-omul 8106  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-o1 14846  df-lo1 14847  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-dvds 15607  df-gcd 15843  df-phi 16102  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-qus 16781  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-cntz 18446  df-od 18655  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19503  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-sra 19943  df-rgmod 19944  df-lidl 19945  df-rsp 19946  df-2idl 20004  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-zring 20617  df-zrh 20650  df-zn 20653  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-cxp 25140  df-dchr 25808
This theorem is referenced by:  dchrisum0  26095
  Copyright terms: Public domain W3C validator