MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lema Structured version   Visualization version   GIF version

Theorem dchrisum0lema 26092
Description: Lemma for dchrisum0 26098. Apply dchrisum 26070 for the function 1 / √𝑦. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
dchrisum0lem1.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
Assertion
Ref Expression
dchrisum0lema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Distinct variable groups:   𝑦,𝑚,𝑐,𝑡, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑚,𝑡,𝑦   𝑁,𝑐,𝑚,𝑡,𝑦   𝜑,𝑐,𝑚,𝑡   𝑊,𝑐,𝑡   𝑚,𝑍,𝑦   𝐷,𝑐,𝑚,𝑡,𝑦   𝐿,𝑎,𝑐,𝑚,𝑡,𝑦   𝑋,𝑎,𝑐,𝑚,𝑡,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑚,𝑎,𝑐)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrisum0lema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum2.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum2.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum2.1 . . 3 1 = (0g𝐺)
7 rpvmasum2.w . . . . . 6 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
87ssrab3 4059 . . . . 5 𝑊 ⊆ (𝐷 ∖ { 1 })
9 dchrisum0.b . . . . 5 (𝜑𝑋𝑊)
108, 9sseldi 3967 . . . 4 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
1110eldifad 3950 . . 3 (𝜑𝑋𝐷)
12 eldifsni 4724 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1310, 12syl 17 . . 3 (𝜑𝑋1 )
14 fveq2 6672 . . . 4 (𝑛 = 𝑥 → (√‘𝑛) = (√‘𝑥))
1514oveq2d 7174 . . 3 (𝑛 = 𝑥 → (1 / (√‘𝑛)) = (1 / (√‘𝑥)))
16 1nn 11651 . . . 4 1 ∈ ℕ
1716a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
18 rpsqrtcl 14626 . . . . 5 (𝑛 ∈ ℝ+ → (√‘𝑛) ∈ ℝ+)
1918adantl 484 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (√‘𝑛) ∈ ℝ+)
2019rprecred 12445 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / (√‘𝑛)) ∈ ℝ)
21 simp3r 1198 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
22 simp2l 1195 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛 ∈ ℝ+)
2322rprege0d 12441 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
24 simp2r 1196 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑥 ∈ ℝ+)
2524rprege0d 12441 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
26 sqrtle 14622 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2723, 25, 26syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (√‘𝑛) ≤ (√‘𝑥)))
2821, 27mpbid 234 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ≤ (√‘𝑥))
2922rpsqrtcld 14773 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑛) ∈ ℝ+)
3024rpsqrtcld 14773 . . . . 5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (√‘𝑥) ∈ ℝ+)
3129, 30lerecd 12453 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → ((√‘𝑛) ≤ (√‘𝑥) ↔ (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛))))
3228, 31mpbid 234 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / (√‘𝑥)) ≤ (1 / (√‘𝑛)))
33 sqrtlim 25552 . . . 4 (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0
3433a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / (√‘𝑛))) ⇝𝑟 0)
35 2fveq3 6677 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
36 fveq2 6672 . . . . . 6 (𝑎 = 𝑛 → (√‘𝑎) = (√‘𝑛))
3736oveq2d 7174 . . . . 5 (𝑎 = 𝑛 → (1 / (√‘𝑎)) = (1 / (√‘𝑛)))
3835, 37oveq12d 7176 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
3938cbvmptv 5171 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
401, 2, 3, 4, 5, 6, 11, 13, 15, 17, 20, 32, 34, 39dchrisum 26070 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
4111adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
42 nnz 12007 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
4342adantl 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
444, 1, 5, 2, 41, 43dchrzrhcl 25823 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
45 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4645nnrpd 12432 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
4746rpsqrtcld 14773 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℝ+)
4847rpcnd 12436 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
4947rpne0d 12439 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ≠ 0)
5044, 48, 49divrecd 11421 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / (√‘𝑛)) = ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛))))
5150mpteq2dva 5163 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / (√‘𝑛)))))
52 dchrisum0lem1.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎)))
5335, 36oveq12d 7176 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / (√‘𝑎)) = ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5453cbvmptv 5171 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / (√‘𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5552, 54eqtri 2846 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / (√‘𝑛)))
5651, 55, 393eqtr4g 2883 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
5756seqeq3d 13380 . . . . . . 7 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
5857breq1d 5078 . . . . . 6 (𝜑 → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
5958adantr 483 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡))
60 2fveq3 6677 . . . . . . . . 9 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
6160fvoveq1d 7180 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
62 fveq2 6672 . . . . . . . . 9 (𝑦 = 𝑥 → (√‘𝑦) = (√‘𝑥))
6362oveq2d 7174 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / (√‘𝑦)) = (𝑐 / (√‘𝑥)))
6461, 63breq12d 5081 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥))))
6564cbvralvw 3451 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)))
6656ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))
6766seqeq3d 13380 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))))
6867fveq1d 6674 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)))
6968fvoveq1d 7180 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)))
70 elrege0 12845 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
7170simplbi 500 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
7271ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℝ)
7372recnd 10671 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
74 1re 10643 . . . . . . . . . . . . . . 15 1 ∈ ℝ
75 elicopnf 12836 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
7674, 75ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
7776simplbi 500 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7877adantl 484 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
79 0red 10646 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
80 1red 10644 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
81 0lt1 11164 . . . . . . . . . . . . . 14 0 < 1
8281a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
8376simprbi 499 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
8483adantl 484 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
8579, 80, 78, 82, 84ltletrd 10802 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
8678, 85elrpd 12431 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
8786rpsqrtcld 14773 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℝ+)
8887rpcnd 12436 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ∈ ℂ)
8987rpne0d 12439 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (√‘𝑥) ≠ 0)
9073, 88, 89divrecd 11421 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / (√‘𝑥)) = (𝑐 · (1 / (√‘𝑥))))
9169, 90breq12d 5081 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9291ralbidva 3198 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / (√‘𝑥)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9365, 92syl5bb 285 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦)) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥)))))
9459, 93anbi12d 632 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9594rexbidva 3298 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9695exbidv 1922 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎))))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / (√‘𝑎)))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / (√‘𝑥))))))
9740, 96mpbird 259 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / (√‘𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  cdif 3935  {csn 4569   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  cz 11984  +crp 12392  [,)cico 12743  cfl 13163  seqcseq 13372  csqrt 14594  abscabs 14595  cli 14843  𝑟 crli 14844  Σcsu 15044  Basecbs 16485  0gc0g 16715  ℤRHomczrh 20649  ℤ/nczn 20652  DChrcdchr 25810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-phi 16105  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-qus 16784  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-nsg 18279  df-eqg 18280  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-zring 20620  df-zrh 20653  df-zn 20656  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-dchr 25811
This theorem is referenced by:  dchrisum0  26098
  Copyright terms: Public domain W3C validator