MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlema Structured version   Visualization version   GIF version

Theorem dchrisumlema 25376
Description: Lemma for dchrisum 25380. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisum.2 (𝑛 = 𝑥𝐴 = 𝐵)
dchrisum.3 (𝜑𝑀 ∈ ℕ)
dchrisum.4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
dchrisum.5 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
dchrisum.6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
dchrisum.7 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · 𝐴))
Assertion
Ref Expression
dchrisumlema (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Distinct variable groups:   𝑥,𝑛, 1   𝑛,𝐹,𝑥   𝑛,𝐼,𝑥   𝑥,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥   𝐵,𝑛   𝑛,𝑍,𝑥   𝐷,𝑛,𝑥   𝑛,𝐿,𝑥   𝑛,𝑀,𝑥   𝑛,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑥)   𝐺(𝑥,𝑛)

Proof of Theorem dchrisumlema
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dchrisum.4 . . . 4 ((𝜑𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
21ralrimiva 3104 . . 3 (𝜑 → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3 nfcsb1v 3690 . . . . 5 𝑛𝐼 / 𝑛𝐴
43nfel1 2917 . . . 4 𝑛𝐼 / 𝑛𝐴 ∈ ℝ
5 csbeq1a 3683 . . . . 5 (𝑛 = 𝐼𝐴 = 𝐼 / 𝑛𝐴)
65eleq1d 2824 . . . 4 (𝑛 = 𝐼 → (𝐴 ∈ ℝ ↔ 𝐼 / 𝑛𝐴 ∈ ℝ))
74, 6rspc 3443 . . 3 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝐼 / 𝑛𝐴 ∈ ℝ))
82, 7syl5com 31 . 2 (𝜑 → (𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ))
9 eqid 2760 . . . 4 (ℤ‘((⌊‘𝐼) + 1)) = (ℤ‘((⌊‘𝐼) + 1))
10 dchrisum.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
1110nnred 11227 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
12 elicopnf 12462 . . . . . . . 8 (𝑀 ∈ ℝ → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1311, 12syl 17 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) ↔ (𝐼 ∈ ℝ ∧ 𝑀𝐼)))
1413simprbda 654 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ)
1514flcld 12793 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℤ)
1615peano2zd 11677 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℤ)
17 nnuz 11916 . . . . . 6 ℕ = (ℤ‘1)
18 1zzd 11600 . . . . . 6 (𝜑 → 1 ∈ ℤ)
19 dchrisum.6 . . . . . 6 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝𝑟 0)
20 nnrp 12035 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
2120ssriv 3748 . . . . . . 7 ℕ ⊆ ℝ+
22 eqid 2760 . . . . . . . 8 (𝑛 ∈ ℝ+𝐴) = (𝑛 ∈ ℝ+𝐴)
2322, 1dmmptd 6185 . . . . . . 7 (𝜑 → dom (𝑛 ∈ ℝ+𝐴) = ℝ+)
2421, 23syl5sseqr 3795 . . . . . 6 (𝜑 → ℕ ⊆ dom (𝑛 ∈ ℝ+𝐴))
2517, 18, 19, 24rlimclim1 14475 . . . . 5 (𝜑 → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
2625adantr 472 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (𝑛 ∈ ℝ+𝐴) ⇝ 0)
27 0red 10233 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ∈ ℝ)
2811adantr 472 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀 ∈ ℝ)
2910nngt0d 11256 . . . . . . . . . 10 (𝜑 → 0 < 𝑀)
3029adantr 472 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝑀)
3113simplbda 655 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝑀𝐼)
3227, 28, 14, 30, 31ltletrd 10389 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 < 𝐼)
3314, 32elrpd 12062 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ∈ ℝ+)
342adantr 472 . . . . . . 7 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
3533, 34, 7sylc 65 . . . . . 6 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℝ)
3635recnd 10260 . . . . 5 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 / 𝑛𝐴 ∈ ℂ)
37 ssid 3765 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ⊆ (ℤ‘((⌊‘𝐼) + 1))
38 fvex 6362 . . . . . 6 (ℤ‘((⌊‘𝐼) + 1)) ∈ V
3937, 38climconst2 14478 . . . . 5 ((𝐼 / 𝑛𝐴 ∈ ℂ ∧ ((⌊‘𝐼) + 1) ∈ ℤ) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4036, 16, 39syl2anc 696 . . . 4 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴}) ⇝ 𝐼 / 𝑛𝐴)
4133rpge0d 12069 . . . . . . . . . 10 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼)
42 flge0nn0 12815 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 0 ≤ 𝐼) → (⌊‘𝐼) ∈ ℕ0)
4314, 41, 42syl2anc 696 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → (⌊‘𝐼) ∈ ℕ0)
44 nn0p1nn 11524 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℕ0 → ((⌊‘𝐼) + 1) ∈ ℕ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → ((⌊‘𝐼) + 1) ∈ ℕ)
46 eluznn 11951 . . . . . . . 8 ((((⌊‘𝐼) + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4745, 46sylan 489 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℕ)
4847nnrpd 12063 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ+)
492ad2antrr 764 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ)
50 nfcsb1v 3690 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴
5150nfel1 2917 . . . . . . . 8 𝑛𝑖 / 𝑛𝐴 ∈ ℝ
52 csbeq1a 3683 . . . . . . . . 9 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
5352eleq1d 2824 . . . . . . . 8 (𝑛 = 𝑖 → (𝐴 ∈ ℝ ↔ 𝑖 / 𝑛𝐴 ∈ ℝ))
5451, 53rspc 3443 . . . . . . 7 (𝑖 ∈ ℝ+ → (∀𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → 𝑖 / 𝑛𝐴 ∈ ℝ))
5548, 49, 54sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴 ∈ ℝ)
5622fvmpts 6447 . . . . . 6 ((𝑖 ∈ ℝ+𝑖 / 𝑛𝐴 ∈ ℝ) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5748, 55, 56syl2anc 696 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) = 𝑖 / 𝑛𝐴)
5857, 55eqeltrd 2839 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ∈ ℝ)
59 fvconst2g 6631 . . . . . 6 ((𝐼 / 𝑛𝐴 ∈ ℝ ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6035, 59sylan 489 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) = 𝐼 / 𝑛𝐴)
6135adantr 472 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 / 𝑛𝐴 ∈ ℝ)
6260, 61eqeltrd 2839 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖) ∈ ℝ)
6333adantr 472 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ+)
64 dchrisum.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑀𝑛𝑛𝑥)) → 𝐵𝐴)
65643expia 1115 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+)) → ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6665ralrimivva 3109 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
6766ad2antrr 764 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴))
68 nfcv 2902 . . . . . . . . 9 𝑛+
69 nfv 1992 . . . . . . . . . 10 𝑛(𝑀𝐼𝐼𝑥)
70 nfcv 2902 . . . . . . . . . . 11 𝑛𝐵
71 nfcv 2902 . . . . . . . . . . 11 𝑛
7270, 71, 3nfbr 4851 . . . . . . . . . 10 𝑛 𝐵𝐼 / 𝑛𝐴
7369, 72nfim 1974 . . . . . . . . 9 𝑛((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
7468, 73nfral 3083 . . . . . . . 8 𝑛𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)
75 breq2 4808 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑀𝑛𝑀𝐼))
76 breq1 4807 . . . . . . . . . . 11 (𝑛 = 𝐼 → (𝑛𝑥𝐼𝑥))
7775, 76anbi12d 749 . . . . . . . . . 10 (𝑛 = 𝐼 → ((𝑀𝑛𝑛𝑥) ↔ (𝑀𝐼𝐼𝑥)))
785breq2d 4816 . . . . . . . . . 10 (𝑛 = 𝐼 → (𝐵𝐴𝐵𝐼 / 𝑛𝐴))
7977, 78imbi12d 333 . . . . . . . . 9 (𝑛 = 𝐼 → (((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8079ralbidv 3124 . . . . . . . 8 (𝑛 = 𝐼 → (∀𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) ↔ ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8174, 80rspc 3443 . . . . . . 7 (𝐼 ∈ ℝ+ → (∀𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ((𝑀𝑛𝑛𝑥) → 𝐵𝐴) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴)))
8263, 67, 81sylc 65 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴))
8331adantr 472 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑀𝐼)
8414adantr 472 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ∈ ℝ)
85 reflcl 12791 . . . . . . . . 9 (𝐼 ∈ ℝ → (⌊‘𝐼) ∈ ℝ)
86 peano2re 10401 . . . . . . . . 9 ((⌊‘𝐼) ∈ ℝ → ((⌊‘𝐼) + 1) ∈ ℝ)
8784, 85, 863syl 18 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ∈ ℝ)
8847nnred 11227 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 ∈ ℝ)
89 fllep1 12796 . . . . . . . . . 10 (𝐼 ∈ ℝ → 𝐼 ≤ ((⌊‘𝐼) + 1))
9014, 89syl 17 . . . . . . . . 9 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 𝐼 ≤ ((⌊‘𝐼) + 1))
9190adantr 472 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼 ≤ ((⌊‘𝐼) + 1))
92 eluzle 11892 . . . . . . . . 9 (𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1)) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9392adantl 473 . . . . . . . 8 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((⌊‘𝐼) + 1) ≤ 𝑖)
9484, 87, 88, 91, 93letrd 10386 . . . . . . 7 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝐼𝑖)
9583, 94jca 555 . . . . . 6 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → (𝑀𝐼𝐼𝑖))
96 breq2 4808 . . . . . . . . 9 (𝑥 = 𝑖 → (𝐼𝑥𝐼𝑖))
9796anbi2d 742 . . . . . . . 8 (𝑥 = 𝑖 → ((𝑀𝐼𝐼𝑥) ↔ (𝑀𝐼𝐼𝑖)))
98 eqvisset 3351 . . . . . . . . . . 11 (𝑥 = 𝑖𝑖 ∈ V)
99 equtr2 2109 . . . . . . . . . . . 12 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝑥 = 𝑛)
100 dchrisum.2 . . . . . . . . . . . . 13 (𝑛 = 𝑥𝐴 = 𝐵)
101100equcoms 2102 . . . . . . . . . . . 12 (𝑥 = 𝑛𝐴 = 𝐵)
10299, 101syl 17 . . . . . . . . . . 11 ((𝑥 = 𝑖𝑛 = 𝑖) → 𝐴 = 𝐵)
10398, 102csbied 3701 . . . . . . . . . 10 (𝑥 = 𝑖𝑖 / 𝑛𝐴 = 𝐵)
104103eqcomd 2766 . . . . . . . . 9 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑛𝐴)
105104breq1d 4814 . . . . . . . 8 (𝑥 = 𝑖 → (𝐵𝐼 / 𝑛𝐴𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴))
10697, 105imbi12d 333 . . . . . . 7 (𝑥 = 𝑖 → (((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) ↔ ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
107106rspcv 3445 . . . . . 6 (𝑖 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((𝑀𝐼𝐼𝑥) → 𝐵𝐼 / 𝑛𝐴) → ((𝑀𝐼𝐼𝑖) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)))
10848, 82, 95, 107syl3c 66 . . . . 5 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → 𝑖 / 𝑛𝐴𝐼 / 𝑛𝐴)
109108, 57, 603brtr4d 4836 . . . 4 (((𝜑𝐼 ∈ (𝑀[,)+∞)) ∧ 𝑖 ∈ (ℤ‘((⌊‘𝐼) + 1))) → ((𝑛 ∈ ℝ+𝐴)‘𝑖) ≤ (((ℤ‘((⌊‘𝐼) + 1)) × {𝐼 / 𝑛𝐴})‘𝑖))
1109, 16, 26, 40, 58, 62, 109climle 14569 . . 3 ((𝜑𝐼 ∈ (𝑀[,)+∞)) → 0 ≤ 𝐼 / 𝑛𝐴)
111110ex 449 . 2 (𝜑 → (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴))
1128, 111jca 555 1 (𝜑 → ((𝐼 ∈ ℝ+𝐼 / 𝑛𝐴 ∈ ℝ) ∧ (𝐼 ∈ (𝑀[,)+∞) → 0 ≤ 𝐼 / 𝑛𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  Vcvv 3340  csb 3674  {csn 4321   class class class wbr 4804  cmpt 4881   × cxp 5264  dom cdm 5266  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  +∞cpnf 10263   < clt 10266  cle 10267  cn 11212  0cn0 11484  cz 11569  cuz 11879  +crp 12025  [,)cico 12370  cfl 12785  cli 14414  𝑟 crli 14415  Basecbs 16059  0gc0g 16302  ℤRHomczrh 20050  ℤ/nczn 20053  DChrcdchr 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fl 12787  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419
This theorem is referenced by:  dchrisumlem2  25378  dchrisumlem3  25379
  Copyright terms: Public domain W3C validator