MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulid2 Structured version   Visualization version   GIF version

Theorem dchrmulid2 25755
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmulid2.t · = (+g𝐺)
dchrmulid2.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrmulid2 (𝜑 → ( 1 · 𝑋) = 𝑋)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchrmulid2
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmulid2.t . . 3 · = (+g𝐺)
5 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
6 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
7 dchr1cl.o . . . 4 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
8 dchrmulid2.x . . . . 5 (𝜑𝑋𝐷)
91, 3dchrrcl 25743 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
111, 2, 3, 5, 6, 7, 10dchr1cl 25754 . . 3 (𝜑1𝐷)
121, 2, 3, 4, 11, 8dchrmul 25751 . 2 (𝜑 → ( 1 · 𝑋) = ( 1f · 𝑋))
13 oveq1 7152 . . . . . 6 (1 = if(𝑘𝑈, 1, 0) → (1 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1413eqeq1d 2820 . . . . 5 (1 = if(𝑘𝑈, 1, 0) → ((1 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
15 oveq1 7152 . . . . . 6 (0 = if(𝑘𝑈, 1, 0) → (0 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1615eqeq1d 2820 . . . . 5 (0 = if(𝑘𝑈, 1, 0) → ((0 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
171, 2, 3, 5, 8dchrf 25745 . . . . . . . 8 (𝜑𝑋:𝐵⟶ℂ)
1817ffvelrnda 6843 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
1918adantr 481 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
2019mulid2d 10647 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (1 · (𝑋𝑘)) = (𝑋𝑘))
21 0cn 10621 . . . . . . 7 0 ∈ ℂ
2221mul02i 10817 . . . . . 6 (0 · 0) = 0
231, 2, 5, 6, 10, 3dchrelbas2 25740 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))))
248, 23mpbid 233 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈)))
2524simprd 496 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2625r19.21bi 3205 . . . . . . . . 9 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2726necon1bd 3031 . . . . . . . 8 ((𝜑𝑘𝐵) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2827imp 407 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (𝑋𝑘) = 0)
2928oveq2d 7161 . . . . . 6 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (0 · 0))
3022, 29, 283eqtr4a 2879 . . . . 5 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (𝑋𝑘))
3114, 16, 20, 30ifbothda 4500 . . . 4 ((𝜑𝑘𝐵) → (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘))
3231mpteq2dva 5152 . . 3 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ (𝑋𝑘)))
335fvexi 6677 . . . . 5 𝐵 ∈ V
3433a1i 11 . . . 4 (𝜑𝐵 ∈ V)
35 ax-1cn 10583 . . . . . 6 1 ∈ ℂ
3635, 21ifcli 4509 . . . . 5 if(𝑘𝑈, 1, 0) ∈ ℂ
3736a1i 11 . . . 4 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, 0) ∈ ℂ)
387a1i 11 . . . 4 (𝜑1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
3917feqmptd 6726 . . . 4 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
4034, 37, 18, 38, 39offval2 7415 . . 3 (𝜑 → ( 1f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))))
4132, 40, 393eqtr4d 2863 . 2 (𝜑 → ( 1f · 𝑋) = 𝑋)
4212, 41eqtrd 2853 1 (𝜑 → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  Vcvv 3492  ifcif 4463  cmpt 5137  cfv 6348  (class class class)co 7145  f cof 7396  cc 10523  0cc0 10525  1c1 10526   · cmul 10530  cn 11626  Basecbs 16471  +gcplusg 16553   MndHom cmhm 17942  mulGrpcmgp 19168  Unitcui 19318  fldccnfld 20473  ℤ/nczn 20578  DChrcdchr 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-imas 16769  df-qus 16770  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-nsg 18215  df-eqg 18216  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rsp 19876  df-2idl 19933  df-cnfld 20474  df-zring 20546  df-zn 20582  df-dchr 25736
This theorem is referenced by:  dchrabl  25757  dchr1  25760
  Copyright terms: Public domain W3C validator