MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Visualization version   GIF version

Theorem dchrmusum2 25228
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisumn0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisumn0.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrisumn0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrmusum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑥,𝑦   𝑥,𝑁,𝑦   𝜑,𝑑,𝑥   𝑇,𝑑,𝑥,𝑦   𝑥,𝑍,𝑦   𝑥,𝐷,𝑦   𝐿,𝑎,𝑑,𝑥,𝑦   𝑋,𝑎,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑇(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrmusum2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11881 . . . 4 + ⊆ ℝ
2 ax-1cn 10032 . . . 4 1 ∈ ℂ
3 o1const 14394 . . . 4 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
41, 2, 3mp2an 708 . . 3 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
54a1i 11 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
62a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 fzfid 12812 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
9 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
10 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
11 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
12 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
1312ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
14 elfzelz 12380 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
1514adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
168, 9, 10, 11, 13, 15dchrzrhcl 25015 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
17 elfznn 12408 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1817adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
19 mucl 24912 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2019zred 11520 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
21 nndivre 11094 . . . . . . . . 9 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2220, 21mpancom 704 . . . . . . . 8 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2318, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2423recnd 10106 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
2516, 24mulcld 10098 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
267, 25fsumcl 14508 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
27 dchrisumn0.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
28 climcl 14274 . . . . . 6 (seq1( + , 𝐹) ⇝ 𝑇𝑇 ∈ ℂ)
2927, 28syl 17 . . . . 5 (𝜑𝑇 ∈ ℂ)
3029adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ)
3126, 30mulcld 10098 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
321a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 subcl 10318 . . . . 5 ((1 ∈ ℂ ∧ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
342, 31, 33sylancr 696 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
35 1red 10093 . . . 4 (𝜑 → 1 ∈ ℝ)
36 dchrisumn0.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
37 elrege0 12316 . . . . . 6 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3836, 37sylib 208 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3938simpld 474 . . . 4 (𝜑𝐶 ∈ ℝ)
40 fzfid 12812 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
4125adantlrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
42 nnuz 11761 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
43 1zzd 11446 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
45 nnz 11437 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
478, 9, 10, 11, 44, 46dchrzrhcl 25015 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
48 nncn 11066 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
50 nnne0 11091 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
5150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5247, 49, 51divcld 10839 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
53 dchrisumn0.f . . . . . . . . . . . . . . 15 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
5554fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
56 id 22 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚𝑎 = 𝑚)
5755, 56oveq12d 6708 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5857cbvmptv 4783 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5953, 58eqtri 2673 . . . . . . . . . . . . . 14 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
6052, 59fmptd 6425 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℂ)
6160ffvelrnda 6399 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6242, 43, 61serf 12869 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6362ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
64 simprl 809 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
6564rpred 11910 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
66 nndivre 11094 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
6765, 17, 66syl2an 493 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
6817adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6968nncnd 11074 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
7069mulid2d 10096 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
71 fznnfl 12701 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7265, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 653 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7470, 73eqbrtrd 4707 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
75 1red 10093 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
7665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
7768nnrpd 11908 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
7875, 76, 77lemuldivd 11959 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
7974, 78mpbid 222 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
80 flge1nn 12662 . . . . . . . . . . 11 (((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8167, 79, 80syl2anc 694 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8263, 81ffvelrnd 6400 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) ∈ ℂ)
8341, 82mulcld 10098 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) ∈ ℂ)
8429ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
8541, 84mulcld 10098 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
8640, 83, 85fsumsub 14564 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8741, 82, 84subdid 10524 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8887sumeq2dv 14477 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8912ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
9014ad2antlr 763 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℤ)
91 elfzelz 12380 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℤ)
9291adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℤ)
938, 9, 10, 11, 89, 90, 92dchrzrhmul 25016 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
9493oveq1d 6705 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
9516adantlrr 757 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9769adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
988, 9, 10, 11, 89, 92dchrzrhcl 25015 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
99 elfznn 12408 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
10099adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
101100nncnd 11074 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
10268nnne0d 11103 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ≠ 0)
103102adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
104100nnne0d 11103 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ≠ 0)
10596, 97, 98, 101, 103, 104divmuldivd 10880 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
10694, 105eqtr4d 2688 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
107106oveq2d 6706 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
10868, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
109108zcnd 11521 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℂ)
110109adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
11196, 97, 103divcld 10839 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11298, 101, 104divcld 10839 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
113110, 111, 112mulassd 10101 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
114110, 96, 97, 103div12d 10875 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) = ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)))
115114oveq1d 6705 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
116107, 113, 1153eqtr2d 2691 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
117116sumeq2dv 14477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
118 fzfid 12812 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
119 simpll 805 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝜑)
120119, 99, 52syl2an 493 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
121118, 41, 120fsummulc2 14560 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
122 ovex 6718 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
12357, 53, 122fvmpt 6321 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
124100, 123syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12581, 42syl6eleq 2740 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ (ℤ‘1))
126124, 125, 120fsumser 14505 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
127126oveq2d 6706 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
128117, 121, 1273eqtr2rd 2692 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
129128sumeq2dv 14477 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
130 fveq2 6229 . . . . . . . . . . . . . 14 (𝑛 = (𝑑 · 𝑚) → (𝐿𝑛) = (𝐿‘(𝑑 · 𝑚)))
131130fveq2d 6233 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
132 id 22 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
133131, 132oveq12d 6708 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
134133oveq2d 6706 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
135 elrabi 3391 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} → 𝑑 ∈ ℕ)
136135ad2antll 765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
137136, 19syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
138137zcnd 11521 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
13912ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
140 elfzelz 12380 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
141140adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1428, 9, 10, 11, 139, 141dchrzrhcl 25015 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
14317ssriv 3640 . . . . . . . . . . . . . . . . 17 (1...(⌊‘𝑥)) ⊆ ℕ
144143a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
145144sselda 3636 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
146145nncnd 11074 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
147145nnne0d 11103 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
148142, 146, 147divcld 10839 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
149148adantrr 753 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
150138, 149mulcld 10098 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) ∈ ℂ)
151134, 65, 150dvdsflsumcom 24959 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
152 fveq2 6229 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐿𝑛) = (𝐿‘1))
153152fveq2d 6233 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
154 id 22 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 = 1)
155153, 154oveq12d 6708 . . . . . . . . . . 11 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
156 simprr 811 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
157 flge1nn 12662 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
15865, 156, 157syl2anc 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
159158, 42syl6eleq 2740 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
160 eluzfz1 12386 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
161159, 160syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
162155, 40, 144, 161, 148musumsum 24963 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((𝑋‘(𝐿‘1)) / 1))
163129, 151, 1623eqtr2d 2691 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = ((𝑋‘(𝐿‘1)) / 1))
1648, 9, 10, 11, 12dchrzrh1 25014 . . . . . . . . . . . 12 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
165164adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑋‘(𝐿‘1)) = 1)
166165oveq1d 6705 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
167 1div1e1 10755 . . . . . . . . . 10 (1 / 1) = 1
168166, 167syl6eq 2701 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = 1)
169163, 168eqtr2d 2686 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
17029adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 ∈ ℂ)
17140, 170, 41fsummulc1 14561 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))
172169, 171oveq12d 6708 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
17386, 88, 1723eqtr4rd 2696 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
174173fveq2d 6233 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
17582, 84subcld 10430 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇) ∈ ℂ)
17641, 175mulcld 10098 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
17740, 176fsumcl 14508 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
178177abscld 14219 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
179176abscld 14219 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
18040, 179fsumrecl 14509 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
18139adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℝ)
18240, 176fsumabs 14577 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
183 reflcl 12637 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
18465, 183syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℝ)
185184, 181remulcld 10108 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ∈ ℝ)
186185, 64rerpdivcld 11941 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ∈ ℝ)
187181, 64rerpdivcld 11941 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℝ)
188187adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℝ)
18941abscld 14219 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ∈ ℝ)
19068nnrecred 11104 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℝ)
191175abscld 14219 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℝ)
19277rpred 11910 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
193188, 192remulcld 10108 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℝ)
19441absge0d 14227 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))))
195175absge0d 14227 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
19695abscld 14219 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ∈ ℝ)
19724adantlrr 757 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
198197abscld 14219 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ∈ ℝ)
19995absge0d 14227 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑋‘(𝐿𝑑))))
200197absge0d 14227 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑑) / 𝑑)))
201 eqid 2651 . . . . . . . . . . . . . 14 (Base‘𝑍) = (Base‘𝑍)
20212ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
203 rpvmasum.a . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
204203nnnn0d 11389 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2059, 201, 11znzrhfo 19944 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
206 fof 6153 . . . . . . . . . . . . . . . . 17 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
207204, 205, 2063syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐿:ℤ⟶(Base‘𝑍))
208207adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐿:ℤ⟶(Base‘𝑍))
209 ffvelrn 6397 . . . . . . . . . . . . . . 15 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑑 ∈ ℤ) → (𝐿𝑑) ∈ (Base‘𝑍))
210208, 14, 209syl2an 493 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐿𝑑) ∈ (Base‘𝑍))
2118, 10, 9, 201, 202, 210dchrabs2 25032 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ≤ 1)
212109, 69, 102absdivd 14238 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / (abs‘𝑑)))
21377rprege0d 11917 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
214 absid 14080 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ ℝ ∧ 0 ≤ 𝑑) → (abs‘𝑑) = 𝑑)
215213, 214syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘𝑑) = 𝑑)
216215oveq2d 6706 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / (abs‘𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
217212, 216eqtrd 2685 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
218109abscld 14219 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ∈ ℝ)
219 mule1 24919 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (abs‘(μ‘𝑑)) ≤ 1)
22068, 219syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ≤ 1)
221218, 75, 77, 220lediv1dd 11968 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / 𝑑) ≤ (1 / 𝑑))
222217, 221eqbrtrd 4707 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ≤ (1 / 𝑑))
223196, 75, 198, 190, 199, 200, 211, 222lemul12ad 11004 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 · (1 / 𝑑)))
22495, 197absmuld 14237 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) = ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))))
225190recnd 10106 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℂ)
226225mulid2d 10096 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · (1 / 𝑑)) = (1 / 𝑑))
227226eqcomd 2657 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) = (1 · (1 / 𝑑)))
228223, 224, 2273brtr4d 4717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
229 1re 10077 . . . . . . . . . . . . . . 15 1 ∈ ℝ
230 elicopnf 12307 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑))))
231229, 230ax-mp 5 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)))
23267, 79, 231sylanbrc 699 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ (1[,)+∞))
233 dchrisumn0.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
234233ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
235 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑑) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑑)))
236235fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
237236oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑑) → ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇) = ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))
238237fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
239 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (𝐶 / 𝑦) = (𝐶 / (𝑥 / 𝑑)))
240238, 239breq12d 4698 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
241240rspcv 3336 . . . . . . . . . . . . 13 ((𝑥 / 𝑑) ∈ (1[,)+∞) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
242232, 234, 241sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑)))
243181recnd 10106 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℂ)
244243adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
245 rpcnne0 11888 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
246245ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
247246adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
248 divdiv2 10775 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
249244, 247, 69, 102, 248syl112anc 1370 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
250 div23 10742 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
251244, 69, 247, 250syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
252249, 251eqtrd 2685 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 / 𝑥) · 𝑑))
253242, 252breqtrd 4711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ ((𝐶 / 𝑥) · 𝑑))
254189, 190, 191, 193, 194, 195, 228, 253lemul12ad 11004 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
25541, 175absmuld 14237 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) = ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
256187recnd 10106 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℂ)
257256adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℂ)
258257, 69, 102divcan4d 10845 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = (𝐶 / 𝑥))
259257, 69mulcld 10098 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℂ)
260259, 69, 102divrec2d 10843 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
261258, 260eqtr3d 2687 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
262254, 255, 2613brtr4d 4717 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (𝐶 / 𝑥))
26340, 179, 188, 262fsumle 14575 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥))
264158nnnn0d 11389 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ0)
265 hashfz1 13174 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
266264, 265syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
267266oveq1d 6705 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
268 fsumconst 14566 . . . . . . . . . 10 (((1...(⌊‘𝑥)) ∈ Fin ∧ (𝐶 / 𝑥) ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
26940, 256, 268syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
270158nncnd 11074 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℂ)
271 divass 10741 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
272270, 243, 246, 271syl3anc 1366 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
273267, 269, 2723eqtr4d 2695 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = (((⌊‘𝑥) · 𝐶) / 𝑥))
274263, 273breqtrd 4711 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (((⌊‘𝑥) · 𝐶) / 𝑥))
27538adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
276 flle 12640 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
27765, 276syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ≤ 𝑥)
278 lemul1a 10915 . . . . . . . . 9 ((((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (⌊‘𝑥) ≤ 𝑥) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
279184, 65, 275, 277, 278syl31anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
280185, 181, 64ledivmuld 11963 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶 ↔ ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶)))
281279, 280mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶)
282180, 186, 181, 274, 281letrd 10232 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
283178, 180, 181, 182, 282letrd 10232 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
284174, 283eqbrtrd 4707 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ≤ 𝐶)
28532, 34, 35, 39, 284elo1d 14311 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ∈ 𝑂(1))
2866, 31, 285o1dif 14404 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)))
2875, 286mpbid 222 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  wss 3607   class class class wbr 4685  cmpt 4762  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  cle 10113  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  +crp 11870  [,)cico 12215  ...cfz 12364  cfl 12631  seqcseq 12841  #chash 13157  abscabs 14018  cli 14259  𝑂(1)co1 14261  Σcsu 14460  cdvds 15027  Basecbs 15904  0gc0g 16147  ℤRHomczrh 19896  ℤ/nczn 19899  μcmu 24866  DChrcdchr 25002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-o1 14265  df-lo1 14266  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-qus 16216  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-od 17994  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-mu 24872  df-dchr 25003
This theorem is referenced by:  dchrvmasumiflem2  25236  dchrmusumlem  25256
  Copyright terms: Public domain W3C validator