MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Visualization version   GIF version

Theorem dchrmusumlema 24896
Description: Lemma for dchrmusum 24927 and dchrisumn0 24924. Apply dchrisum 24895 for the function 1 / 𝑦. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
Assertion
Ref Expression
dchrmusumlema (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Distinct variable groups:   𝑡,𝑐,𝑦, 1   𝐹,𝑐,𝑡,𝑦   𝑎,𝑐,𝑡,𝑦   𝑁,𝑐,𝑡,𝑦   𝜑,𝑐,𝑡   𝑦,𝑍   𝐷,𝑐,𝑡,𝑦   𝐿,𝑎,𝑐,𝑡,𝑦   𝑋,𝑎,𝑐,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐷(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑡,𝑎,𝑐)   𝑁(𝑎)   𝑍(𝑡,𝑎,𝑐)

Proof of Theorem dchrmusumlema
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.g . . 3 𝐺 = (DChr‘𝑁)
5 rpvmasum.d . . 3 𝐷 = (Base‘𝐺)
6 rpvmasum.1 . . 3 1 = (0g𝐺)
7 dchrisum.b . . 3 (𝜑𝑋𝐷)
8 dchrisum.n1 . . 3 (𝜑𝑋1 )
9 oveq2 6532 . . 3 (𝑛 = 𝑥 → (1 / 𝑛) = (1 / 𝑥))
10 1nn 10875 . . . 4 1 ∈ ℕ
1110a1i 11 . . 3 (𝜑 → 1 ∈ ℕ)
12 rpreccl 11686 . . . . 5 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1312adantl 480 . . . 4 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ+)
1413rpred 11701 . . 3 ((𝜑𝑛 ∈ ℝ+) → (1 / 𝑛) ∈ ℝ)
15 simp3r 1082 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → 𝑛𝑥)
16 rpregt0 11675 . . . . . 6 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
17 rpregt0 11675 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
18 lerec 10752 . . . . . 6 (((𝑛 ∈ ℝ ∧ 0 < 𝑛) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
1916, 17, 18syl2an 492 . . . . 5 ((𝑛 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
20193ad2ant2 1075 . . . 4 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (𝑛𝑥 ↔ (1 / 𝑥) ≤ (1 / 𝑛)))
2115, 20mpbid 220 . . 3 ((𝜑 ∧ (𝑛 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (1 ≤ 𝑛𝑛𝑥)) → (1 / 𝑥) ≤ (1 / 𝑛))
22 ax-1cn 9847 . . . 4 1 ∈ ℂ
23 divrcnv 14366 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
2422, 23mp1i 13 . . 3 (𝜑 → (𝑛 ∈ ℝ+ ↦ (1 / 𝑛)) ⇝𝑟 0)
25 fveq2 6085 . . . . . 6 (𝑎 = 𝑛 → (𝐿𝑎) = (𝐿𝑛))
2625fveq2d 6089 . . . . 5 (𝑎 = 𝑛 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑛)))
27 oveq2 6532 . . . . 5 (𝑎 = 𝑛 → (1 / 𝑎) = (1 / 𝑛))
2826, 27oveq12d 6542 . . . 4 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
2928cbvmptv 4669 . . 3 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
301, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 29dchrisum 24895 . 2 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
317adantr 479 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋𝐷)
32 nnz 11229 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
3332adantl 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
344, 1, 5, 2, 31, 33dchrzrhcl 24684 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
35 nncn 10872 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
3635adantl 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
37 nnne0 10897 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3837adantl 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
3934, 36, 38divrecd 10650 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑛)) · (1 / 𝑛)))
4039mpteq2dva 4663 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) · (1 / 𝑛))))
41 dchrisumn0.f . . . . . . . . . 10 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
42 id 22 . . . . . . . . . . . 12 (𝑎 = 𝑛𝑎 = 𝑛)
4326, 42oveq12d 6542 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑛)) / 𝑛))
4443cbvmptv 4669 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4541, 44eqtri 2628 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ ((𝑋‘(𝐿𝑛)) / 𝑛))
4640, 45, 293eqtr4g 2665 . . . . . . . 8 (𝜑𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4746adantr 479 . . . . . . 7 ((𝜑𝑐 ∈ (0[,)+∞)) → 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))
4847seqeq3d 12623 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
4948breq1d 4584 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (seq1( + , 𝐹) ⇝ 𝑡 ↔ seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡))
50 fveq2 6085 . . . . . . . . . . 11 (𝑦 = 𝑥 → (⌊‘𝑦) = (⌊‘𝑥))
5150fveq2d 6089 . . . . . . . . . 10 (𝑦 = 𝑥 → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘𝑥)))
5251oveq1d 6539 . . . . . . . . 9 (𝑦 = 𝑥 → ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡) = ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡))
5352fveq2d 6089 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) = (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)))
54 oveq2 6532 . . . . . . . 8 (𝑦 = 𝑥 → (𝑐 / 𝑦) = (𝑐 / 𝑥))
5553, 54breq12d 4587 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥)))
5655cbvralv 3143 . . . . . 6 (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥))
5746seqeq3d 12623 . . . . . . . . . . . 12 (𝜑 → seq1( + , 𝐹) = seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))))
5857fveq1d 6087 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐹)‘(⌊‘𝑥)) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)))
5958oveq1d 6539 . . . . . . . . . 10 (𝜑 → ((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡) = ((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡))
6059fveq2d 6089 . . . . . . . . 9 (𝜑 → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
6160ad2antrr 757 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) = (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)))
62 elrege0 12102 . . . . . . . . . . . 12 (𝑐 ∈ (0[,)+∞) ↔ (𝑐 ∈ ℝ ∧ 0 ≤ 𝑐))
6362simplbi 474 . . . . . . . . . . 11 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℝ)
6463recnd 9921 . . . . . . . . . 10 (𝑐 ∈ (0[,)+∞) → 𝑐 ∈ ℂ)
6564ad2antlr 758 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑐 ∈ ℂ)
66 1re 9892 . . . . . . . . . . . . 13 1 ∈ ℝ
67 elicopnf 12093 . . . . . . . . . . . . 13 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
6866, 67ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
6968simplbi 474 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
7069adantl 480 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
7170recnd 9921 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℂ)
72 0red 9894 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 ∈ ℝ)
73 1red 9908 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ)
74 0lt1 10396 . . . . . . . . . . . 12 0 < 1
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 1)
7668simprbi 478 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
7776adantl 480 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
7872, 73, 70, 75, 77ltletrd 10045 . . . . . . . . . 10 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 0 < 𝑥)
7978gt0ne0d 10438 . . . . . . . . 9 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ≠ 0)
8065, 71, 79divrecd 10650 . . . . . . . 8 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → (𝑐 / 𝑥) = (𝑐 · (1 / 𝑥)))
8161, 80breq12d 4587 . . . . . . 7 (((𝜑𝑐 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (1[,)+∞)) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ (abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
8281ralbidva 2964 . . . . . 6 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 / 𝑥) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
8356, 82syl5bb 270 . . . . 5 ((𝜑𝑐 ∈ (0[,)+∞)) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦) ↔ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥))))
8449, 83anbi12d 742 . . . 4 ((𝜑𝑐 ∈ (0[,)+∞)) → ((seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8584rexbidva 3027 . . 3 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8685exbidv 1836 . 2 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) ↔ ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎)))) ⇝ 𝑡 ∧ ∀𝑥 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · (1 / 𝑎))))‘(⌊‘𝑥)) − 𝑡)) ≤ (𝑐 · (1 / 𝑥)))))
8730, 86mpbird 245 1 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , 𝐹) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  wne 2776  wral 2892  wrex 2893   class class class wbr 4574  cmpt 4634  cfv 5787  (class class class)co 6524  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794  +∞cpnf 9924   < clt 9927  cle 9928  cmin 10114   / cdiv 10530  cn 10864  cz 11207  +crp 11661  [,)cico 12001  cfl 12405  seqcseq 12615  abscabs 13765  cli 14006  𝑟 crli 14007  Basecbs 15638  0gc0g 15866  ℤRHomczrh 19609  ℤ/nczn 19612  DChrcdchr 24671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-tpos 7213  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-ec 7605  df-qs 7609  df-map 7720  df-pm 7721  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-rp 11662  df-ico 12005  df-fz 12150  df-fzo 12287  df-fl 12407  df-mod 12483  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-limsup 13993  df-clim 14010  df-rlim 14011  df-sum 14208  df-dvds 14765  df-gcd 14998  df-phi 15252  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-0g 15868  df-imas 15934  df-qus 15935  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-mhm 17101  df-grp 17191  df-minusg 17192  df-sbg 17193  df-mulg 17307  df-subg 17357  df-nsg 17358  df-eqg 17359  df-ghm 17424  df-cmn 17961  df-abl 17962  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-oppr 18389  df-dvdsr 18407  df-unit 18408  df-invr 18438  df-rnghom 18481  df-subrg 18544  df-lmod 18631  df-lss 18697  df-lsp 18736  df-sra 18936  df-rgmod 18937  df-lidl 18938  df-rsp 18939  df-2idl 18996  df-cnfld 19511  df-zring 19581  df-zrh 19613  df-zn 19616  df-dchr 24672
This theorem is referenced by:  rpvmasum2  24915  dchrisum0re  24916  dchrisum0lem3  24922  dchrmusum  24927  dchrvmasum  24928
  Copyright terms: Public domain W3C validator