MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrplusg Structured version   Visualization version   GIF version

Theorem dchrplusg 24872
Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrplusg.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
dchrplusg (𝜑· = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))

Proof of Theorem dchrplusg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 eqid 2621 . . . 4 (Base‘𝑍) = (Base‘𝑍)
4 eqid 2621 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
5 dchrplusg.n . . . 4 (𝜑𝑁 ∈ ℕ)
6 dchrmhm.b . . . . 5 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrbas 24860 . . . 4 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑍) ∖ (Unit‘𝑍)) × {0}) ⊆ 𝑥})
81, 2, 3, 4, 5, 7dchrval 24859 . . 3 (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
98fveq2d 6152 . 2 (𝜑 → (+g𝐺) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}))
10 dchrmul.t . 2 · = (+g𝐺)
11 fvex 6158 . . . . 5 (Base‘𝐺) ∈ V
126, 11eqeltri 2694 . . . 4 𝐷 ∈ V
1312, 12xpex 6915 . . 3 (𝐷 × 𝐷) ∈ V
14 ofexg 6854 . . 3 ((𝐷 × 𝐷) ∈ V → ( ∘𝑓 · ↾ (𝐷 × 𝐷)) ∈ V)
15 eqid 2621 . . . 4 {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}
1615grpplusg 15913 . . 3 (( ∘𝑓 · ↾ (𝐷 × 𝐷)) ∈ V → ( ∘𝑓 · ↾ (𝐷 × 𝐷)) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩}))
1713, 14, 16mp2b 10 . 2 ( ∘𝑓 · ↾ (𝐷 × 𝐷)) = (+g‘{⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
189, 10, 173eqtr4g 2680 1 (𝜑· = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  {cpr 4150  cop 4154   × cxp 5072  cres 5076  cfv 5847  𝑓 cof 6848   · cmul 9885  cn 10964  ndxcnx 15778  Basecbs 15781  +gcplusg 15862  Unitcui 18560  ℤ/nczn 19770  DChrcdchr 24857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-dchr 24858
This theorem is referenced by:  dchrmul  24873
  Copyright terms: Public domain W3C validator