Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrval Structured version   Visualization version   GIF version

Theorem dchrval 25158
 Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrval.d (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
Assertion
Ref Expression
dchrval (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrval
Dummy variables 𝑧 𝑛 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrval.g . 2 𝐺 = (DChr‘𝑁)
2 df-dchr 25157 . . . 4 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩})
32a1i 11 . . 3 (𝜑 → DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩}))
4 fvexd 6364 . . . 4 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) ∈ V)
5 ovex 6841 . . . . . . 7 ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∈ V
65rabex 4964 . . . . . 6 {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V
76a1i 11 . . . . 5 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V)
8 dchrval.d . . . . . . . . . . 11 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
98ad2antrr 764 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
10 simpr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
1110fveq2d 6356 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑁))
12 dchrval.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ/nℤ‘𝑁)
1311, 12syl6reqr 2813 . . . . . . . . . . . . . . 15 ((𝜑𝑛 = 𝑁) → 𝑍 = (ℤ/nℤ‘𝑛))
1413eqeq2d 2770 . . . . . . . . . . . . . 14 ((𝜑𝑛 = 𝑁) → (𝑧 = 𝑍𝑧 = (ℤ/nℤ‘𝑛)))
1514biimpar 503 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝑧 = 𝑍)
1615fveq2d 6356 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (mulGrp‘𝑧) = (mulGrp‘𝑍))
1716oveq1d 6828 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) = ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
1815fveq2d 6356 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = (Base‘𝑍))
19 dchrval.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑍)
2018, 19syl6eqr 2812 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = 𝐵)
2115fveq2d 6356 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = (Unit‘𝑍))
22 dchrval.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
2321, 22syl6eqr 2812 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = 𝑈)
2420, 23difeq12d 3872 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((Base‘𝑧) ∖ (Unit‘𝑧)) = (𝐵𝑈))
2524xpeq1d 5295 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) = ((𝐵𝑈) × {0}))
2625sseq1d 3773 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥 ↔ ((𝐵𝑈) × {0}) ⊆ 𝑥))
2717, 26rabeqbidv 3335 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
289, 27eqtr4d 2797 . . . . . . . . 9 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥})
2928eqeq2d 2770 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (𝑏 = 𝐷𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}))
3029biimpar 503 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → 𝑏 = 𝐷)
3130opeq2d 4560 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐷⟩)
3230sqxpeqd 5298 . . . . . . . 8 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → (𝑏 × 𝑏) = (𝐷 × 𝐷))
3332reseq2d 5551 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ( ∘𝑓 · ↾ (𝑏 × 𝑏)) = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))
3433opeq2d 4560 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩ = ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩)
3531, 34preq12d 4420 . . . . 5 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
367, 35csbied 3701 . . . 4 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
374, 36csbied 3701 . . 3 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
38 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
39 prex 5058 . . . 4 {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} ∈ V
4039a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} ∈ V)
413, 37, 38, 40fvmptd 6450 . 2 (𝜑 → (DChr‘𝑁) = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
421, 41syl5eq 2806 1 (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {crab 3054  Vcvv 3340  ⦋csb 3674   ∖ cdif 3712   ⊆ wss 3715  {csn 4321  {cpr 4323  ⟨cop 4327   ↦ cmpt 4881   × cxp 5264   ↾ cres 5268  ‘cfv 6049  (class class class)co 6813   ∘𝑓 cof 7060  0cc0 10128   · cmul 10133  ℕcn 11212  ndxcnx 16056  Basecbs 16059  +gcplusg 16143   MndHom cmhm 17534  mulGrpcmgp 18689  Unitcui 18839  ℂfldccnfld 19948  ℤ/nℤczn 20053  DChrcdchr 25156 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-res 5278  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-dchr 25157 This theorem is referenced by:  dchrbas  25159  dchrplusg  25171
 Copyright terms: Public domain W3C validator