MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmaeq0 Structured version   Visualization version   GIF version

Theorem dchrvmaeq0 25392
Description: The set 𝑊 is the collection of all non-principal Dirichlet characters such that the sum Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 is equal to zero. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmaeq0.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
Assertion
Ref Expression
dchrvmaeq0 (𝜑 → (𝑋𝑊𝑆 = 0))
Distinct variable groups:   𝑦,𝑚, 1   𝐶,𝑚,𝑦   𝑦,𝐹   𝑚,𝑎,𝑦   𝑚,𝑁,𝑦   𝜑,𝑚   𝑆,𝑚,𝑦   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝐿,𝑎,𝑚,𝑦   𝑋,𝑎,𝑚,𝑦   𝑚,𝐹
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   1 (𝑎)   𝐹(𝑎)   𝐺(𝑦,𝑚,𝑎)   𝑁(𝑎)   𝑊(𝑦,𝑚,𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmaeq0
StepHypRef Expression
1 dchrisum.b . . . 4 (𝜑𝑋𝐷)
2 dchrisum.n1 . . . 4 (𝜑𝑋1 )
3 eldifsn 4462 . . . 4 (𝑋 ∈ (𝐷 ∖ { 1 }) ↔ (𝑋𝐷𝑋1 ))
41, 2, 3sylanbrc 701 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
5 fveq1 6351 . . . . . . . 8 (𝑦 = 𝑋 → (𝑦‘(𝐿𝑚)) = (𝑋‘(𝐿𝑚)))
65oveq1d 6828 . . . . . . 7 (𝑦 = 𝑋 → ((𝑦‘(𝐿𝑚)) / 𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
76sumeq2sdv 14634 . . . . . 6 (𝑦 = 𝑋 → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚))
87eqeq1d 2762 . . . . 5 (𝑦 = 𝑋 → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
9 dchrvmaeq0.w . . . . 5 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
108, 9elrab2 3507 . . . 4 (𝑋𝑊 ↔ (𝑋 ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
1110baib 982 . . 3 (𝑋 ∈ (𝐷 ∖ { 1 }) → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
124, 11syl 17 . 2 (𝜑 → (𝑋𝑊 ↔ Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0))
13 nnuz 11916 . . . 4 ℕ = (ℤ‘1)
14 1zzd 11600 . . . 4 (𝜑 → 1 ∈ ℤ)
15 fveq2 6352 . . . . . . . 8 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
1615fveq2d 6356 . . . . . . 7 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
17 id 22 . . . . . . 7 (𝑎 = 𝑚𝑎 = 𝑚)
1816, 17oveq12d 6831 . . . . . 6 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
19 dchrvmasumif.f . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
20 ovex 6841 . . . . . 6 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
2118, 19, 20fvmpt 6444 . . . . 5 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
2221adantl 473 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
23 rpvmasum.g . . . . . 6 𝐺 = (DChr‘𝑁)
24 rpvmasum.z . . . . . 6 𝑍 = (ℤ/nℤ‘𝑁)
25 rpvmasum.d . . . . . 6 𝐷 = (Base‘𝐺)
26 rpvmasum.l . . . . . 6 𝐿 = (ℤRHom‘𝑍)
271adantr 472 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
28 nnz 11591 . . . . . . 7 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
2928adantl 473 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
3023, 24, 25, 26, 27, 29dchrzrhcl 25169 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
31 nncn 11220 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
3231adantl 473 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
33 nnne0 11245 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
3433adantl 473 . . . . 5 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
3530, 32, 34divcld 10993 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
36 dchrvmasumif.s . . . 4 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
3713, 14, 22, 35, 36isumclim 14687 . . 3 (𝜑 → Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 𝑆)
3837eqeq1d 2762 . 2 (𝜑 → (Σ𝑚 ∈ ℕ ((𝑋‘(𝐿𝑚)) / 𝑚) = 0 ↔ 𝑆 = 0))
3912, 38bitrd 268 1 (𝜑 → (𝑋𝑊𝑆 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  {crab 3054  cdif 3712  {csn 4321   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131  +∞cpnf 10263  cle 10267  cmin 10458   / cdiv 10876  cn 11212  cz 11569  [,)cico 12370  cfl 12785  seqcseq 12995  abscabs 14173  cli 14414  Σcsu 14615  Basecbs 16059  0gc0g 16302  ℤRHomczrh 20050  ℤ/nczn 20053  DChrcdchr 25156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-imas 16370  df-qus 16371  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-rnghom 18917  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-sra 19374  df-rgmod 19375  df-lidl 19376  df-rsp 19377  df-2idl 19434  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-zn 20057  df-dchr 25157
This theorem is referenced by:  rpvmasum2  25400  dchrisum0re  25401  dchrisum0lem2  25406  dchrisumn0  25409
  Copyright terms: Public domain W3C validator