MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2if Structured version   Visualization version   GIF version

Theorem dchrvmasum2if 24930
Description: Combine the results of dchrvmasumlem1 24928 and dchrvmasum2lem 24929 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.a (𝜑𝐴 ∈ ℝ+)
dchrvmasum2.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
dchrvmasum2if (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Distinct variable groups:   𝑚,𝑛, 1   𝑚,𝑑,𝑛,𝐴   𝑚,𝑁,𝑛   𝜑,𝑑,𝑚,𝑛   𝜓,𝑑,𝑚   𝑚,𝑍,𝑛   𝐷,𝑚,𝑛   𝐿,𝑑,𝑚,𝑛   𝑋,𝑑,𝑚,𝑛   𝐴,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝐷(𝑑)   1 (𝑑)   𝐺(𝑚,𝑛,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasum2if
StepHypRef Expression
1 fzfid 12591 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 rpvmasum.g . . . . . . . . 9 𝐺 = (DChr‘𝑁)
3 rpvmasum.z . . . . . . . . 9 𝑍 = (ℤ/nℤ‘𝑁)
4 rpvmasum.d . . . . . . . . 9 𝐷 = (Base‘𝐺)
5 rpvmasum.l . . . . . . . . 9 𝐿 = (ℤRHom‘𝑍)
6 dchrisum.b . . . . . . . . . 10 (𝜑𝑋𝐷)
76adantr 479 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
8 elfzelz 12170 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℤ)
98adantl 480 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℤ)
102, 3, 4, 5, 7, 9dchrzrhcl 24714 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
11 elfznn 12198 . . . . . . . . . . 11 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
1211adantl 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
13 mucl 24611 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1413zred 11316 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
15 nndivre 10905 . . . . . . . . . . 11 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1614, 15mpancom 699 . . . . . . . . . 10 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1712, 16syl 17 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 9924 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1910, 18mulcld 9916 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
20 fzfid 12591 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (1...(⌊‘(𝐴 / 𝑑))) ∈ Fin)
217adantr 479 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑋𝐷)
22 elfzelz 12170 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℤ)
2322adantl 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℤ)
242, 3, 4, 5, 21, 23dchrzrhcl 24714 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
25 elfznn 12198 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑))) → 𝑚 ∈ ℕ)
2625adantl 480 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℕ)
2726nnrpd 11704 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℝ+)
2827relogcld 24117 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℝ)
2928, 26nndivred 10918 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
3029recnd 9924 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
3124, 30mulcld 9916 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3220, 31fsumcl 14259 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) ∈ ℂ)
3319, 32mulcld 9916 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) ∈ ℂ)
34 dchrvmasum.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ+)
3511nnrpd 11704 . . . . . . . . . . . . . . 15 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℝ+)
36 rpdivcl 11690 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝑑 ∈ ℝ+) → (𝐴 / 𝑑) ∈ ℝ+)
3734, 35, 36syl2an 492 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑑) ∈ ℝ+)
3837adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (𝐴 / 𝑑) ∈ ℝ+)
3938, 27rpdivcld 11723 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝐴 / 𝑑) / 𝑚) ∈ ℝ+)
4039relogcld 24117 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℝ)
4140, 26nndivred 10918 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℝ)
4241recnd 9924 . . . . . . . . 9 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚) ∈ ℂ)
4324, 42mulcld 9916 . . . . . . . 8 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4420, 43fsumcl 14259 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)) ∈ ℂ)
4519, 44mulcld 9916 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) ∈ ℂ)
461, 33, 45fsumadd 14265 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
4738, 27relogdivd 24120 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) = ((log‘(𝐴 / 𝑑)) − (log‘𝑚)))
4847oveq2d 6542 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) = ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))))
4928recnd 9924 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘𝑚) ∈ ℂ)
5037relogcld 24117 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℝ)
5150recnd 9924 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5251adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) ∈ ℂ)
5349, 52pncan3d 10246 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘𝑚) + ((log‘(𝐴 / 𝑑)) − (log‘𝑚))) = (log‘(𝐴 / 𝑑)))
5448, 53eqtr2d 2644 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘(𝐴 / 𝑑)) = ((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))))
5554oveq1d 6541 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚))
5640recnd 9924 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (log‘((𝐴 / 𝑑) / 𝑚)) ∈ ℂ)
5726nncnd 10885 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ∈ ℂ)
5826nnne0d 10914 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → 𝑚 ≠ 0)
5949, 56, 57, 58divdird 10690 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → (((log‘𝑚) + (log‘((𝐴 / 𝑑) / 𝑚))) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6055, 59eqtrd 2643 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((log‘(𝐴 / 𝑑)) / 𝑚) = (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))
6160oveq2d 6542 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6224, 30, 42adddid 9920 . . . . . . . . . . 11 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · (((log‘𝑚) / 𝑚) + ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6361, 62eqtrd 2643 . . . . . . . . . 10 (((𝜑𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6463sumeq2dv 14229 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6520, 31, 43fsumadd 14265 . . . . . . . . 9 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))(((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + ((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6664, 65eqtrd 2643 . . . . . . . 8 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
6766oveq2d 6542 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6819, 32, 44adddid 9920 . . . . . . 7 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)) + Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
6967, 68eqtrd 2643 . . . . . 6 ((𝜑𝑑 ∈ (1...(⌊‘𝐴))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7069sumeq2dv 14229 . . . . 5 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
71 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
72 rpvmasum.1 . . . . . . 7 1 = (0g𝐺)
73 dchrisum.n1 . . . . . . 7 (𝜑𝑋1 )
743, 5, 71, 2, 4, 72, 6, 73, 34dchrvmasumlem1 24928 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
75 dchrvmasum2.2 . . . . . . 7 (𝜑 → 1 ≤ 𝐴)
763, 5, 71, 2, 4, 72, 6, 73, 34, 75dchrvmasum2lem 24929 . . . . . 6 (𝜑 → (log‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚))))
7774, 76oveq12d 6544 . . . . 5 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) + Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘((𝐴 / 𝑑) / 𝑚)) / 𝑚)))))
7846, 70, 773eqtr4rd 2654 . . . 4 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
7978adantr 479 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
80 iftrue 4041 . . . . 5 (𝜓 → if(𝜓, (log‘𝐴), 0) = (log‘𝐴))
8180oveq2d 6542 . . . 4 (𝜓 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
8281adantl 480 . . 3 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + (log‘𝐴)))
83 iftrue 4041 . . . . . . . . . 10 (𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = (𝐴 / 𝑑))
8483fveq2d 6091 . . . . . . . . 9 (𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘(𝐴 / 𝑑)))
8584oveq1d 6541 . . . . . . . 8 (𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘(𝐴 / 𝑑)) / 𝑚))
8685oveq2d 6542 . . . . . . 7 (𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8786sumeq2sdv 14230 . . . . . 6 (𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚)))
8887oveq2d 6542 . . . . 5 (𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
8988sumeq2sdv 14230 . . . 4 (𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9089adantl 480 . . 3 ((𝜑𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘(𝐴 / 𝑑)) / 𝑚))))
9179, 82, 903eqtr4d 2653 . 2 ((𝜑𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
926adantr 479 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑋𝐷)
93 elfzelz 12170 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℤ)
9493adantl 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℤ)
952, 3, 4, 5, 92, 94dchrzrhcl 24714 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
96 elfznn 12198 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
9796adantl 480 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
98 vmacl 24588 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
99 nndivre 10905 . . . . . . . . . 10 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
10098, 99mpancom 699 . . . . . . . . 9 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
101100recnd 9924 . . . . . . . 8 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10297, 101syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
10395, 102mulcld 9916 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘𝐴))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1041, 103fsumcl 14259 . . . . 5 (𝜑 → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
105104adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝜓) → Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
106105addid1d 10087 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
107 iffalse 4044 . . . . 5 𝜓 → if(𝜓, (log‘𝐴), 0) = 0)
108107adantl 480 . . . 4 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, (log‘𝐴), 0) = 0)
109108oveq2d 6542 . . 3 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0))
110 iffalse 4044 . . . . . . . . . 10 𝜓 → if(𝜓, (𝐴 / 𝑑), 𝑚) = 𝑚)
111110fveq2d 6091 . . . . . . . . 9 𝜓 → (log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) = (log‘𝑚))
112111oveq1d 6541 . . . . . . . 8 𝜓 → ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚) = ((log‘𝑚) / 𝑚))
113112oveq2d 6542 . . . . . . 7 𝜓 → ((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = ((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
114113sumeq2sdv 14230 . . . . . 6 𝜓 → Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚)))
115114oveq2d 6542 . . . . 5 𝜓 → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
116115sumeq2sdv 14230 . . . 4 𝜓 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))))
11774eqcomd 2615 . . . 4 (𝜑 → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘𝑚) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
118116, 117sylan9eqr 2665 . . 3 ((𝜑 ∧ ¬ 𝜓) → Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
119106, 109, 1183eqtr4d 2653 . 2 ((𝜑 ∧ ¬ 𝜓) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
12091, 119pm2.61dan 827 1 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘𝐴))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝜓, (log‘𝐴), 0)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝐴 / 𝑑)))((𝑋‘(𝐿𝑚)) · ((log‘if(𝜓, (𝐴 / 𝑑), 𝑚)) / 𝑚))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  ifcif 4035   class class class wbr 4577  cfv 5789  (class class class)co 6526  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cle 9931  cmin 10117   / cdiv 10535  cn 10869  cz 11212  +crp 11666  ...cfz 12154  cfl 12410  Σcsu 14212  Basecbs 15643  0gc0g 15871  ℤRHomczrh 19614  ℤ/nczn 19617  logclog 24049  Λcvma 24562  μcmu 24565  DChrcdchr 24701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-ec 7608  df-qs 7612  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ioc 12009  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-mod 12488  df-seq 12621  df-exp 12680  df-fac 12880  df-bc 12909  df-hash 12937  df-shft 13603  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-limsup 13998  df-clim 14015  df-rlim 14016  df-sum 14213  df-ef 14585  df-sin 14587  df-cos 14588  df-pi 14590  df-dvds 14770  df-gcd 15003  df-prm 15172  df-pc 15328  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-hom 15741  df-cco 15742  df-rest 15854  df-topn 15855  df-0g 15873  df-gsum 15874  df-topgen 15875  df-pt 15876  df-prds 15879  df-xrs 15933  df-qtop 15938  df-imas 15939  df-qus 15940  df-xps 15941  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-mhm 17106  df-submnd 17107  df-grp 17196  df-minusg 17197  df-sbg 17198  df-mulg 17312  df-subg 17362  df-nsg 17363  df-eqg 17364  df-ghm 17429  df-cntz 17521  df-cmn 17966  df-abl 17967  df-mgp 18261  df-ur 18273  df-ring 18320  df-cring 18321  df-oppr 18394  df-dvdsr 18412  df-unit 18413  df-rnghom 18486  df-subrg 18549  df-lmod 18636  df-lss 18702  df-lsp 18741  df-sra 18941  df-rgmod 18942  df-lidl 18943  df-rsp 18944  df-2idl 19001  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-fbas 19512  df-fg 19513  df-cnfld 19516  df-zring 19586  df-zrh 19618  df-zn 19621  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cld 20580  df-ntr 20581  df-cls 20582  df-nei 20659  df-lp 20697  df-perf 20698  df-cn 20788  df-cnp 20789  df-haus 20876  df-tx 21122  df-hmeo 21315  df-fil 21407  df-fm 21499  df-flim 21500  df-flf 21501  df-xms 21882  df-ms 21883  df-tms 21884  df-cncf 22436  df-limc 23380  df-dv 23381  df-log 24051  df-vma 24568  df-mu 24571  df-dchr 24702
This theorem is referenced by:  dchrvmasumiflem2  24935
  Copyright terms: Public domain W3C validator