MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1lem Structured version   Visualization version   GIF version

Theorem dcubic1lem 24465
Description: Lemma for dcubic1 24467 and dcubic2 24466: simplify the cubic equation under the substitution 𝑋 = 𝑈𝑀 / 𝑈. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic2.u (𝜑𝑈 ∈ ℂ)
dcubic2.z (𝜑𝑈 ≠ 0)
dcubic2.2 (𝜑𝑋 = (𝑈 − (𝑀 / 𝑈)))
Assertion
Ref Expression
dcubic1lem (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))

Proof of Theorem dcubic1lem
StepHypRef Expression
1 dcubic2.u . . . . . . . . 9 (𝜑𝑈 ∈ ℂ)
2 3nn0 11255 . . . . . . . . 9 3 ∈ ℕ0
3 expcl 12815 . . . . . . . . 9 ((𝑈 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑈↑3) ∈ ℂ)
41, 2, 3sylancl 693 . . . . . . . 8 (𝜑 → (𝑈↑3) ∈ ℂ)
54sqvald 12942 . . . . . . 7 (𝜑 → ((𝑈↑3)↑2) = ((𝑈↑3) · (𝑈↑3)))
65oveq1d 6620 . . . . . 6 (𝜑 → (((𝑈↑3)↑2) / (𝑈↑3)) = (((𝑈↑3) · (𝑈↑3)) / (𝑈↑3)))
7 dcubic2.z . . . . . . . 8 (𝜑𝑈 ≠ 0)
8 3z 11355 . . . . . . . . 9 3 ∈ ℤ
98a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℤ)
101, 7, 9expne0d 12951 . . . . . . 7 (𝜑 → (𝑈↑3) ≠ 0)
114, 4, 10divcan4d 10752 . . . . . 6 (𝜑 → (((𝑈↑3) · (𝑈↑3)) / (𝑈↑3)) = (𝑈↑3))
126, 11eqtr2d 2661 . . . . 5 (𝜑 → (𝑈↑3) = (((𝑈↑3)↑2) / (𝑈↑3)))
13 dcubic.d . . . . . . . 8 (𝜑𝑄 ∈ ℂ)
14 dcubic.m . . . . . . . . . . 11 (𝜑𝑀 = (𝑃 / 3))
15 dcubic.c . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
16 3cn 11040 . . . . . . . . . . . . 13 3 ∈ ℂ
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℂ)
18 3ne0 11060 . . . . . . . . . . . . 13 3 ≠ 0
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ≠ 0)
2015, 17, 19divcld 10746 . . . . . . . . . . 11 (𝜑 → (𝑃 / 3) ∈ ℂ)
2114, 20eqeltrd 2704 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
22 expcl 12815 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
2321, 2, 22sylancl 693 . . . . . . . . 9 (𝜑 → (𝑀↑3) ∈ ℂ)
2423, 4, 10divcld 10746 . . . . . . . 8 (𝜑 → ((𝑀↑3) / (𝑈↑3)) ∈ ℂ)
2513, 24negsubd 10343 . . . . . . 7 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) = (𝑄 − ((𝑀↑3) / (𝑈↑3))))
2613, 4, 10divcan4d 10752 . . . . . . . 8 (𝜑 → ((𝑄 · (𝑈↑3)) / (𝑈↑3)) = 𝑄)
2726oveq1d 6620 . . . . . . 7 (𝜑 → (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))) = (𝑄 − ((𝑀↑3) / (𝑈↑3))))
2825, 27eqtr4d 2663 . . . . . 6 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) = (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))))
29 dcubic.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
3015, 29mulcld 10005 . . . . . . . . 9 (𝜑 → (𝑃 · 𝑋) ∈ ℂ)
3130negcld 10324 . . . . . . . 8 (𝜑 → -(𝑃 · 𝑋) ∈ ℂ)
3224negcld 10324 . . . . . . . 8 (𝜑 → -((𝑀↑3) / (𝑈↑3)) ∈ ℂ)
3331, 32, 30, 13add42d 10210 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) + ((𝑃 · 𝑋) + 𝑄)) = ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))))
3415, 29mulneg2d 10429 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑋) = -(𝑃 · 𝑋))
35 dcubic2.2 . . . . . . . . . . . . . . 15 (𝜑𝑋 = (𝑈 − (𝑀 / 𝑈)))
3635negeqd 10220 . . . . . . . . . . . . . 14 (𝜑 → -𝑋 = -(𝑈 − (𝑀 / 𝑈)))
3721, 1, 7divcld 10746 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 / 𝑈) ∈ ℂ)
381, 37negsubdid 10352 . . . . . . . . . . . . . 14 (𝜑 → -(𝑈 − (𝑀 / 𝑈)) = (-𝑈 + (𝑀 / 𝑈)))
3936, 38eqtrd 2660 . . . . . . . . . . . . 13 (𝜑 → -𝑋 = (-𝑈 + (𝑀 / 𝑈)))
4039oveq2d 6621 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑋) = (𝑃 · (-𝑈 + (𝑀 / 𝑈))))
4134, 40eqtr3d 2662 . . . . . . . . . . 11 (𝜑 → -(𝑃 · 𝑋) = (𝑃 · (-𝑈 + (𝑀 / 𝑈))))
421negcld 10324 . . . . . . . . . . . 12 (𝜑 → -𝑈 ∈ ℂ)
4315, 42, 37adddid 10009 . . . . . . . . . . 11 (𝜑 → (𝑃 · (-𝑈 + (𝑀 / 𝑈))) = ((𝑃 · -𝑈) + (𝑃 · (𝑀 / 𝑈))))
4415, 1mulneg2d 10429 . . . . . . . . . . . 12 (𝜑 → (𝑃 · -𝑈) = -(𝑃 · 𝑈))
4544oveq1d 6620 . . . . . . . . . . 11 (𝜑 → ((𝑃 · -𝑈) + (𝑃 · (𝑀 / 𝑈))) = (-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))))
4641, 43, 453eqtrd 2664 . . . . . . . . . 10 (𝜑 → -(𝑃 · 𝑋) = (-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))))
4746oveq1d 6620 . . . . . . . . 9 (𝜑 → (-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) = ((-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))) + -((𝑀↑3) / (𝑈↑3))))
4815, 1mulcld 10005 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝑈) ∈ ℂ)
4948negcld 10324 . . . . . . . . . 10 (𝜑 → -(𝑃 · 𝑈) ∈ ℂ)
5015, 37mulcld 10005 . . . . . . . . . 10 (𝜑 → (𝑃 · (𝑀 / 𝑈)) ∈ ℂ)
5149, 50, 32addassd 10007 . . . . . . . . 9 (𝜑 → ((-(𝑃 · 𝑈) + (𝑃 · (𝑀 / 𝑈))) + -((𝑀↑3) / (𝑈↑3))) = (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
5247, 51eqtrd 2660 . . . . . . . 8 (𝜑 → (-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) = (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
5352oveq1d 6620 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + -((𝑀↑3) / (𝑈↑3))) + ((𝑃 · 𝑋) + 𝑄)) = ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)))
5431, 30addcomd 10183 . . . . . . . . . 10 (𝜑 → (-(𝑃 · 𝑋) + (𝑃 · 𝑋)) = ((𝑃 · 𝑋) + -(𝑃 · 𝑋)))
5530negidd 10327 . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝑋) + -(𝑃 · 𝑋)) = 0)
5654, 55eqtrd 2660 . . . . . . . . 9 (𝜑 → (-(𝑃 · 𝑋) + (𝑃 · 𝑋)) = 0)
5756oveq1d 6620 . . . . . . . 8 (𝜑 → ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (0 + (𝑄 + -((𝑀↑3) / (𝑈↑3)))))
5813, 32addcld 10004 . . . . . . . . 9 (𝜑 → (𝑄 + -((𝑀↑3) / (𝑈↑3))) ∈ ℂ)
5958addid2d 10182 . . . . . . . 8 (𝜑 → (0 + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6057, 59eqtrd 2660 . . . . . . 7 (𝜑 → ((-(𝑃 · 𝑋) + (𝑃 · 𝑋)) + (𝑄 + -((𝑀↑3) / (𝑈↑3)))) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6133, 53, 603eqtr3d 2668 . . . . . 6 (𝜑 → ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)) = (𝑄 + -((𝑀↑3) / (𝑈↑3))))
6213, 4mulcld 10005 . . . . . . 7 (𝜑 → (𝑄 · (𝑈↑3)) ∈ ℂ)
6362, 23, 4, 10divsubdird 10785 . . . . . 6 (𝜑 → (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3)) = (((𝑄 · (𝑈↑3)) / (𝑈↑3)) − ((𝑀↑3) / (𝑈↑3))))
6428, 61, 633eqtr4d 2670 . . . . 5 (𝜑 → ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄)) = (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3)))
6512, 64oveq12d 6623 . . . 4 (𝜑 → ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))) = ((((𝑈↑3)↑2) / (𝑈↑3)) + (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3))))
661, 37negsubd 10343 . . . . . . . . . 10 (𝜑 → (𝑈 + -(𝑀 / 𝑈)) = (𝑈 − (𝑀 / 𝑈)))
6735, 66eqtr4d 2663 . . . . . . . . 9 (𝜑𝑋 = (𝑈 + -(𝑀 / 𝑈)))
6867oveq1d 6620 . . . . . . . 8 (𝜑 → (𝑋↑3) = ((𝑈 + -(𝑀 / 𝑈))↑3))
6937negcld 10324 . . . . . . . . 9 (𝜑 → -(𝑀 / 𝑈) ∈ ℂ)
70 binom3 12922 . . . . . . . . 9 ((𝑈 ∈ ℂ ∧ -(𝑀 / 𝑈) ∈ ℂ) → ((𝑈 + -(𝑀 / 𝑈))↑3) = (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))))
711, 69, 70syl2anc 692 . . . . . . . 8 (𝜑 → ((𝑈 + -(𝑀 / 𝑈))↑3) = (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))))
721sqcld 12943 . . . . . . . . . . . . . 14 (𝜑 → (𝑈↑2) ∈ ℂ)
7372, 37mulneg2d 10429 . . . . . . . . . . . . 13 (𝜑 → ((𝑈↑2) · -(𝑀 / 𝑈)) = -((𝑈↑2) · (𝑀 / 𝑈)))
7472, 21, 1, 7div12d 10782 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑈↑2) · (𝑀 / 𝑈)) = (𝑀 · ((𝑈↑2) / 𝑈)))
751sqvald 12942 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑈↑2) = (𝑈 · 𝑈))
7675oveq1d 6620 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑈↑2) / 𝑈) = ((𝑈 · 𝑈) / 𝑈))
771, 1, 7divcan4d 10752 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑈 · 𝑈) / 𝑈) = 𝑈)
7876, 77eqtrd 2660 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑈↑2) / 𝑈) = 𝑈)
7978oveq2d 6621 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 · ((𝑈↑2) / 𝑈)) = (𝑀 · 𝑈))
8074, 79eqtrd 2660 . . . . . . . . . . . . . 14 (𝜑 → ((𝑈↑2) · (𝑀 / 𝑈)) = (𝑀 · 𝑈))
8180negeqd 10220 . . . . . . . . . . . . 13 (𝜑 → -((𝑈↑2) · (𝑀 / 𝑈)) = -(𝑀 · 𝑈))
8273, 81eqtrd 2660 . . . . . . . . . . . 12 (𝜑 → ((𝑈↑2) · -(𝑀 / 𝑈)) = -(𝑀 · 𝑈))
8382oveq2d 6621 . . . . . . . . . . 11 (𝜑 → (3 · ((𝑈↑2) · -(𝑀 / 𝑈))) = (3 · -(𝑀 · 𝑈)))
8421, 1mulcld 10005 . . . . . . . . . . . 12 (𝜑 → (𝑀 · 𝑈) ∈ ℂ)
8517, 84mulneg2d 10429 . . . . . . . . . . 11 (𝜑 → (3 · -(𝑀 · 𝑈)) = -(3 · (𝑀 · 𝑈)))
8617, 21, 1mulassd 10008 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝑀) · 𝑈) = (3 · (𝑀 · 𝑈)))
8714oveq2d 6621 . . . . . . . . . . . . . . 15 (𝜑 → (3 · 𝑀) = (3 · (𝑃 / 3)))
8815, 17, 19divcan2d 10748 . . . . . . . . . . . . . . 15 (𝜑 → (3 · (𝑃 / 3)) = 𝑃)
8987, 88eqtrd 2660 . . . . . . . . . . . . . 14 (𝜑 → (3 · 𝑀) = 𝑃)
9089oveq1d 6620 . . . . . . . . . . . . 13 (𝜑 → ((3 · 𝑀) · 𝑈) = (𝑃 · 𝑈))
9186, 90eqtr3d 2662 . . . . . . . . . . . 12 (𝜑 → (3 · (𝑀 · 𝑈)) = (𝑃 · 𝑈))
9291negeqd 10220 . . . . . . . . . . 11 (𝜑 → -(3 · (𝑀 · 𝑈)) = -(𝑃 · 𝑈))
9383, 85, 923eqtrd 2664 . . . . . . . . . 10 (𝜑 → (3 · ((𝑈↑2) · -(𝑀 / 𝑈))) = -(𝑃 · 𝑈))
9493oveq2d 6621 . . . . . . . . 9 (𝜑 → ((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) = ((𝑈↑3) + -(𝑃 · 𝑈)))
95 sqneg 12860 . . . . . . . . . . . . . . . 16 ((𝑀 / 𝑈) ∈ ℂ → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈)↑2))
9637, 95syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈)↑2))
9737sqvald 12942 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈) · (𝑀 / 𝑈)))
9896, 97eqtrd 2660 . . . . . . . . . . . . . 14 (𝜑 → (-(𝑀 / 𝑈)↑2) = ((𝑀 / 𝑈) · (𝑀 / 𝑈)))
9998oveq2d 6621 . . . . . . . . . . . . 13 (𝜑 → (𝑈 · (-(𝑀 / 𝑈)↑2)) = (𝑈 · ((𝑀 / 𝑈) · (𝑀 / 𝑈))))
1001, 37, 37mulassd 10008 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · (𝑀 / 𝑈)) · (𝑀 / 𝑈)) = (𝑈 · ((𝑀 / 𝑈) · (𝑀 / 𝑈))))
10121, 1, 7divcan2d 10748 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 · (𝑀 / 𝑈)) = 𝑀)
102101oveq1d 6620 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · (𝑀 / 𝑈)) · (𝑀 / 𝑈)) = (𝑀 · (𝑀 / 𝑈)))
10399, 100, 1023eqtr2d 2666 . . . . . . . . . . . 12 (𝜑 → (𝑈 · (-(𝑀 / 𝑈)↑2)) = (𝑀 · (𝑀 / 𝑈)))
104103oveq2d 6621 . . . . . . . . . . 11 (𝜑 → (3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) = (3 · (𝑀 · (𝑀 / 𝑈))))
10517, 21, 37mulassd 10008 . . . . . . . . . . 11 (𝜑 → ((3 · 𝑀) · (𝑀 / 𝑈)) = (3 · (𝑀 · (𝑀 / 𝑈))))
10689oveq1d 6620 . . . . . . . . . . 11 (𝜑 → ((3 · 𝑀) · (𝑀 / 𝑈)) = (𝑃 · (𝑀 / 𝑈)))
107104, 105, 1063eqtr2d 2666 . . . . . . . . . 10 (𝜑 → (3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) = (𝑃 · (𝑀 / 𝑈)))
108 3nn 11131 . . . . . . . . . . . . 13 3 ∈ ℕ
109108a1i 11 . . . . . . . . . . . 12 (𝜑 → 3 ∈ ℕ)
110 2nn 11130 . . . . . . . . . . . . . 14 2 ∈ ℕ
111 1nn0 11253 . . . . . . . . . . . . . 14 1 ∈ ℕ0
112 1nn 10976 . . . . . . . . . . . . . 14 1 ∈ ℕ
113 2t1e2 11121 . . . . . . . . . . . . . . . 16 (2 · 1) = 2
114113oveq1i 6615 . . . . . . . . . . . . . . 15 ((2 · 1) + 1) = (2 + 1)
115 2p1e3 11096 . . . . . . . . . . . . . . 15 (2 + 1) = 3
116114, 115eqtri 2648 . . . . . . . . . . . . . 14 ((2 · 1) + 1) = 3
117 1lt2 11139 . . . . . . . . . . . . . 14 1 < 2
118110, 111, 112, 116, 117ndvdsi 15055 . . . . . . . . . . . . 13 ¬ 2 ∥ 3
119118a1i 11 . . . . . . . . . . . 12 (𝜑 → ¬ 2 ∥ 3)
120 oexpneg 14988 . . . . . . . . . . . 12 (((𝑀 / 𝑈) ∈ ℂ ∧ 3 ∈ ℕ ∧ ¬ 2 ∥ 3) → (-(𝑀 / 𝑈)↑3) = -((𝑀 / 𝑈)↑3))
12137, 109, 119, 120syl3anc 1323 . . . . . . . . . . 11 (𝜑 → (-(𝑀 / 𝑈)↑3) = -((𝑀 / 𝑈)↑3))
1222a1i 11 . . . . . . . . . . . . 13 (𝜑 → 3 ∈ ℕ0)
12321, 1, 7, 122expdivd 12959 . . . . . . . . . . . 12 (𝜑 → ((𝑀 / 𝑈)↑3) = ((𝑀↑3) / (𝑈↑3)))
124123negeqd 10220 . . . . . . . . . . 11 (𝜑 → -((𝑀 / 𝑈)↑3) = -((𝑀↑3) / (𝑈↑3)))
125121, 124eqtrd 2660 . . . . . . . . . 10 (𝜑 → (-(𝑀 / 𝑈)↑3) = -((𝑀↑3) / (𝑈↑3)))
126107, 125oveq12d 6623 . . . . . . . . 9 (𝜑 → ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3)) = ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))
12794, 126oveq12d 6623 . . . . . . . 8 (𝜑 → (((𝑈↑3) + (3 · ((𝑈↑2) · -(𝑀 / 𝑈)))) + ((3 · (𝑈 · (-(𝑀 / 𝑈)↑2))) + (-(𝑀 / 𝑈)↑3))) = (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
12868, 71, 1273eqtrd 2664 . . . . . . 7 (𝜑 → (𝑋↑3) = (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))))
12950, 32addcld 10004 . . . . . . . 8 (𝜑 → ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))) ∈ ℂ)
1304, 49, 129addassd 10007 . . . . . . 7 (𝜑 → (((𝑈↑3) + -(𝑃 · 𝑈)) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) = ((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))))
131128, 130eqtrd 2660 . . . . . 6 (𝜑 → (𝑋↑3) = ((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))))
132131oveq1d 6620 . . . . 5 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = (((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))) + ((𝑃 · 𝑋) + 𝑄)))
13349, 129addcld 10004 . . . . . 6 (𝜑 → (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) ∈ ℂ)
13430, 13addcld 10004 . . . . . 6 (𝜑 → ((𝑃 · 𝑋) + 𝑄) ∈ ℂ)
1354, 133, 134addassd 10007 . . . . 5 (𝜑 → (((𝑈↑3) + (-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3))))) + ((𝑃 · 𝑋) + 𝑄)) = ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))))
136132, 135eqtrd 2660 . . . 4 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = ((𝑈↑3) + ((-(𝑃 · 𝑈) + ((𝑃 · (𝑀 / 𝑈)) + -((𝑀↑3) / (𝑈↑3)))) + ((𝑃 · 𝑋) + 𝑄))))
1374sqcld 12943 . . . . 5 (𝜑 → ((𝑈↑3)↑2) ∈ ℂ)
13862, 23subcld 10337 . . . . 5 (𝜑 → ((𝑄 · (𝑈↑3)) − (𝑀↑3)) ∈ ℂ)
139137, 138, 4, 10divdird 10784 . . . 4 (𝜑 → ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = ((((𝑈↑3)↑2) / (𝑈↑3)) + (((𝑄 · (𝑈↑3)) − (𝑀↑3)) / (𝑈↑3))))
14065, 136, 1393eqtr4d 2670 . . 3 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)))
141140eqeq1d 2628 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = 0))
142137, 138addcld 10004 . . 3 (𝜑 → (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) ∈ ℂ)
143142, 4, 10diveq0ad 10756 . 2 (𝜑 → (((((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) / (𝑈↑3)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))
144141, 143bitrd 268 1 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  2c2 11015  3c3 11016  0cn0 11237  cz 11322  cexp 12797  cdvds 14902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903
This theorem is referenced by:  dcubic2  24466  dcubic1  24467
  Copyright terms: Public domain W3C validator