MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5nprm Structured version   Visualization version   GIF version

Theorem dec5nprm 15713
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypothesis
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
Assertion
Ref Expression
dec5nprm ¬ 𝐴5 ∈ ℙ

Proof of Theorem dec5nprm
StepHypRef Expression
1 2nn 11145 . . . 4 2 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 11004 . . 3 (2 · 𝐴) ∈ ℕ
4 peano2nn 10992 . . 3 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ)
53, 4ax-mp 5 . 2 ((2 · 𝐴) + 1) ∈ ℕ
6 5nn 11148 . 2 5 ∈ ℕ
7 1nn0 11268 . . 3 1 ∈ ℕ0
8 1lt2 11154 . . 3 1 < 2
91, 2, 7, 7, 8numlti 11505 . 2 1 < ((2 · 𝐴) + 1)
10 1lt5 11163 . 2 1 < 5
111nncni 10990 . . . . . 6 2 ∈ ℂ
122nncni 10990 . . . . . 6 𝐴 ∈ ℂ
13 5cn 11060 . . . . . 6 5 ∈ ℂ
1411, 12, 13mul32i 10192 . . . . 5 ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴)
15 5t2e10 11594 . . . . . . 7 (5 · 2) = 10
1613, 11, 15mulcomli 10007 . . . . . 6 (2 · 5) = 10
1716oveq1i 6625 . . . . 5 ((2 · 5) · 𝐴) = (10 · 𝐴)
1814, 17eqtri 2643 . . . 4 ((2 · 𝐴) · 5) = (10 · 𝐴)
1913mulid2i 10003 . . . 4 (1 · 5) = 5
2018, 19oveq12i 6627 . . 3 (((2 · 𝐴) · 5) + (1 · 5)) = ((10 · 𝐴) + 5)
213nncni 10990 . . . 4 (2 · 𝐴) ∈ ℂ
22 ax-1cn 9954 . . . 4 1 ∈ ℂ
2321, 22, 13adddiri 10011 . . 3 (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5))
24 dfdec10 11457 . . 3 𝐴5 = ((10 · 𝐴) + 5)
2520, 23, 243eqtr4i 2653 . 2 (((2 · 𝐴) + 1) · 5) = 𝐴5
265, 6, 9, 10, 25nprmi 15345 1 ¬ 𝐴5 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 1987  (class class class)co 6615  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901  cn 10980  2c2 11030  5c5 11033  cdc 11453  cprime 15328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-prm 15329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator