MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq1 Structured version   Visualization version   GIF version

Theorem deceq1 11332
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 6535 . . 3 (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵))
21oveq1d 6542 . 2 (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶))
3 df-dec 11326 . 2 𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶)
4 df-dec 11326 . 2 𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶)
52, 3, 43eqtr4g 2668 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  (class class class)co 6527  1c1 9793   + caddc 9795   · cmul 9797  9c9 10924  cdc 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-dec 11326
This theorem is referenced by:  deceq1i  11336
  Copyright terms: Public domain W3C validator