MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decexOLD Structured version   Visualization version   GIF version

Theorem decexOLD 11331
Description: Obsolete proof of decex 11330 as of 6-Sep-2021. (Contributed by Mario Carneiro, 17-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
decexOLD 𝐴𝐵 ∈ V

Proof of Theorem decexOLD
StepHypRef Expression
1 dfdecOLD 11327 . 2 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
2 ovex 6555 . 2 ((10 · 𝐴) + 𝐵) ∈ V
31, 2eqeltri 2683 1 𝐴𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1976  Vcvv 3172  (class class class)co 6527   + caddc 9795   · cmul 9797  10c10 10925  cdc 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-nul 4712
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-10OLD 10934  df-dec 11326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator