MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmataa0 Structured version   Visualization version   GIF version

Theorem decpmataa0 20492
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmataa0 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥   𝑁,𝑠,𝑥   𝑅,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐶(𝑥,𝑠)   𝑃(𝑥,𝑠)

Proof of Theorem decpmataa0
Dummy variables 𝑖 𝑗 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . . . 6 𝐵 = (Base‘𝐶)
31, 2matrcl 20137 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
43simpld 475 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simpl 473 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
7 simpr 477 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
8 decpmate.p . . . 4 𝑃 = (Poly1𝑅)
9 eqid 2621 . . . 4 (0g𝑅) = (0g𝑅)
108, 1, 2, 9pmatcoe1fsupp 20425 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
115, 6, 7, 10syl3anc 1323 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
12 decpmatcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 eqid 2621 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
148, 1, 2, 12, 13decpmatcl 20491 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
15143expa 1262 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
165, 6jca 554 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1712matring 20168 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
18 decpmatfsupp.0 . . . . . . . . . 10 0 = (0g𝐴)
1913, 18ring0cl 18490 . . . . . . . . 9 (𝐴 ∈ Ring → 0 ∈ (Base‘𝐴))
2016, 17, 193syl 18 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝐴))
2120adantr 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 0 ∈ (Base‘𝐴))
2212, 13eqmat 20149 . . . . . . 7 (((𝑀 decompPMat 𝑥) ∈ (Base‘𝐴) ∧ 0 ∈ (Base‘𝐴)) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
2315, 21, 22syl2anc 692 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
24 df-3an 1038 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ↔ ((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0))
258, 1, 2decpmate 20490 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2624, 25sylanbr 490 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2716adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2827adantr 481 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2912, 9mat0op 20144 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3018, 29syl5eq 2667 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3128, 30syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
32 eqidd 2622 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
33 simpl 473 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3433adantl 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
35 simpr 477 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3635adantl 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
37 fvex 6158 . . . . . . . . . 10 (0g𝑅) ∈ V
3837a1i 11 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
3931, 32, 34, 36, 38ovmpt2d 6741 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖 0 𝑗) = (0g𝑅))
4026, 39eqeq12d 2636 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
41402ralbidva 2982 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4223, 41bitrd 268 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4342imbi2d 330 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4443ralbidva 2979 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4544rexbidv 3045 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4611, 45mpbird 247 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186   class class class wbr 4613  cfv 5847  (class class class)co 6604  cmpt2 6606  Fincfn 7899   < clt 10018  0cn0 11236  Basecbs 15781  0gc0g 16021  Ringcrg 18468  Poly1cpl1 19466  coe1cco1 19467   Mat cmat 20132   decompPMat cdecpmat 20486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-psr 19275  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-ply1 19471  df-coe1 19472  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-decpmat 20487
This theorem is referenced by:  decpmatfsupp  20493  pmatcollpwfi  20506
  Copyright terms: Public domain W3C validator