MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmul Structured version   Visualization version   GIF version

Theorem decpmatmul 20771
Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
decpmatmul.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
decpmatmul ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑁   𝑃,𝑘   𝑅,𝑘   𝑈,𝑘   𝑘,𝑊   𝐴,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem decpmatmul
Dummy variables 𝑡 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2753 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
2 oveq1 6812 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑥(𝑈 decompPMat 𝑘)𝑡) = (𝑖(𝑈 decompPMat 𝑘)𝑡))
3 oveq2 6813 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) = (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))
42, 3oveqan12d 6824 . . . . . . . . . 10 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
54mpteq2dv 4889 . . . . . . . . 9 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
65oveq2d 6821 . . . . . . . 8 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
76mpteq2dv 4889 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
87oveq2d 6821 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
98adantl 473 . . . . 5 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
10 simprl 811 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
11 simprr 813 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
12 ovexd 6835 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))) ∈ V)
131, 9, 10, 11, 12ovmpt2d 6945 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
14 decpmatmul.c . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑁 Mat 𝑃)
15 decpmatmul.b . . . . . . . . . . . . . . . . . . . 20 𝐵 = (Base‘𝐶)
1614, 15matrcl 20412 . . . . . . . . . . . . . . . . . . 19 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
1716simpld 477 . . . . . . . . . . . . . . . . . 18 (𝑈𝐵𝑁 ∈ Fin)
1817adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵𝑊𝐵) → 𝑁 ∈ Fin)
1918anim2i 594 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
2019ancomd 466 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21203adant3 1126 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
22 decpmatmul.a . . . . . . . . . . . . . . 15 𝐴 = (𝑁 Mat 𝑅)
23 eqid 2752 . . . . . . . . . . . . . . 15 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2422, 23matmulr 20438 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2521, 24syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2625adantr 472 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2726adantr 472 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
2827eqcomd 2758 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2928oveqd 6822 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))))
30 eqid 2752 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
31 eqid 2752 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
32 simp1 1130 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
3332adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ Ring)
3433adantr 472 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
3521simpld 477 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
3635adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑁 ∈ Fin)
3736adantr 472 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑁 ∈ Fin)
38 simpl2l 1280 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈𝐵)
3938adantr 472 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
40 elfznn0 12618 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
4140adantl 473 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
4234, 39, 413jca 1122 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
43 decpmatmul.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
44 eqid 2752 . . . . . . . . . . . . 13 (Base‘𝐴) = (Base‘𝐴)
4543, 14, 15, 22, 44decpmatcl 20766 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4642, 45syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
4722, 30, 44matbas2i 20422 . . . . . . . . . . 11 ((𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
4846, 47syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
49 simpl2r 1282 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑊𝐵)
5049adantr 472 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
51 fznn0sub 12558 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...𝐾) → (𝐾𝑘) ∈ ℕ0)
5251adantl 473 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
5334, 50, 523jca 1122 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
5443, 14, 15, 22, 44decpmatcl 20766 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5553, 54syl 17 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
5622, 30, 44matbas2i 20422 . . . . . . . . . . 11 ((𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
5755, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
5823, 30, 31, 34, 37, 37, 37, 48, 57mamuval 20386 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
5929, 58eqtrd 2786 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
6059mpteq2dva 4888 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))
6160oveq2d 6821 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
62 eqid 2752 . . . . . . 7 (0g𝐴) = (0g𝐴)
63 ovexd 6835 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ V)
64 ringcmn 18773 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6532, 64syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ CMnd)
6665adantr 472 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑅 ∈ CMnd)
6766adantr 472 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ CMnd)
68673ad2ant1 1127 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ CMnd)
69373ad2ant1 1127 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑁 ∈ Fin)
70343ad2ant1 1127 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → 𝑅 ∈ Ring)
7170adantr 472 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
72 simpl2 1227 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑥𝑁)
73 simpr 479 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑡𝑁)
74423ad2ant1 1127 . . . . . . . . . . . . . 14 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7574adantr 472 . . . . . . . . . . . . 13 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
7675, 45syl 17 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
7722, 30, 44, 72, 73, 76matecld 20426 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅))
78 simpl3 1229 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → 𝑦𝑁)
79553ad2ant1 1127 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8079adantr 472 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
8122, 30, 44, 73, 78, 80matecld 20426 . . . . . . . . . . 11 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅))
8230, 31ringcl 18753 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥(𝑈 decompPMat 𝑘)𝑡) ∈ (Base‘𝑅) ∧ (𝑡(𝑊 decompPMat (𝐾𝑘))𝑦) ∈ (Base‘𝑅)) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8371, 77, 81, 82syl3anc 1473 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) ∧ 𝑡𝑁) → ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8483ralrimiva 3096 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → ∀𝑡𝑁 ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)) ∈ (Base‘𝑅))
8530, 68, 69, 84gsummptcl 18558 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑥𝑁𝑦𝑁) → (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))) ∈ (Base‘𝑅))
8622, 30, 44, 37, 34, 85matbas2d 20423 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ (Base‘𝐴))
87 eqid 2752 . . . . . . . 8 (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))
88 fzfid 12958 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0...𝐾) ∈ Fin)
89 simpl 474 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → 𝑁 ∈ Fin)
9089, 89jca 555 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑃 ∈ V) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9116, 90syl 17 . . . . . . . . . . . . 13 (𝑈𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9291adantr 472 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
93923ad2ant2 1128 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9493adantr 472 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
9594adantr 472 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
96 mpt2exga 7406 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
9795, 96syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))) ∈ V)
98 fvexd 6356 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) ∈ V)
9987, 88, 97, 98fsuppmptdm 8443 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))) finSupp (0g𝐴))
10022, 44, 62, 36, 63, 33, 86, 99matgsum 20437 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
10161, 100eqtrd 2786 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦))))))))
102101oveqd 6822 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗) = (𝑖(𝑥𝑁, 𝑦𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑥(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑦)))))))𝑗))
103 simpl2 1227 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑈𝐵𝑊𝐵))
104 simpl3 1229 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝐾 ∈ ℕ0)
10543, 14, 15decpmatmullem 20770 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝑖𝑁𝑗𝑁𝐾 ∈ ℕ0)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
10636, 33, 103, 10, 11, 104, 105syl213anc 1492 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
107 simpll1 1252 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑅 ∈ Ring)
108 simplrl 819 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑖𝑁)
109 simprl 811 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑡𝑁)
11015eleq2i 2823 . . . . . . . . . . . . . 14 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
111110biimpi 206 . . . . . . . . . . . . 13 (𝑈𝐵𝑈 ∈ (Base‘𝐶))
112111adantr 472 . . . . . . . . . . . 12 ((𝑈𝐵𝑊𝐵) → 𝑈 ∈ (Base‘𝐶))
1131123ad2ant2 1128 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝑈 ∈ (Base‘𝐶))
114113adantr 472 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑈 ∈ (Base‘𝐶))
115114adantr 472 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑈 ∈ (Base‘𝐶))
116 eqid 2752 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
11714, 116matecl 20425 . . . . . . . . 9 ((𝑖𝑁𝑡𝑁𝑈 ∈ (Base‘𝐶)) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
118108, 109, 115, 117syl3anc 1473 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑖𝑈𝑡) ∈ (Base‘𝑃))
11940ad2antll 767 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑘 ∈ ℕ0)
120 eqid 2752 . . . . . . . . 9 (coe1‘(𝑖𝑈𝑡)) = (coe1‘(𝑖𝑈𝑡))
121120, 116, 43, 30coe1fvalcl 19776 . . . . . . . 8 (((𝑖𝑈𝑡) ∈ (Base‘𝑃) ∧ 𝑘 ∈ ℕ0) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
122118, 119, 121syl2anc 696 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅))
123 simplrr 820 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑗𝑁)
12449adantr 472 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → 𝑊𝐵)
12514, 116, 15, 109, 123, 124matecld 20426 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝑡𝑊𝑗) ∈ (Base‘𝑃))
12651ad2antll 767 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (𝐾𝑘) ∈ ℕ0)
127 eqid 2752 . . . . . . . . 9 (coe1‘(𝑡𝑊𝑗)) = (coe1‘(𝑡𝑊𝑗))
128127, 116, 43, 30coe1fvalcl 19776 . . . . . . . 8 (((𝑡𝑊𝑗) ∈ (Base‘𝑃) ∧ (𝐾𝑘) ∈ ℕ0) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
129125, 126, 128syl2anc 696 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅))
13030, 31ringcl 18753 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑖𝑈𝑡))‘𝑘) ∈ (Base‘𝑅) ∧ ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)) ∈ (Base‘𝑅)) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
131107, 122, 129, 130syl3anc 1473 . . . . . 6 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑡𝑁𝑘 ∈ (0...𝐾))) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) ∈ (Base‘𝑅))
13230, 66, 36, 88, 131gsumcom3fi 20400 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))))
13342adantr 472 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
13410adantr 472 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑖𝑁)
135134anim1i 593 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖𝑁𝑡𝑁))
13643, 14, 15decpmate 20765 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0) ∧ (𝑖𝑁𝑡𝑁)) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
137133, 135, 136syl2anc 696 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑖(𝑈 decompPMat 𝑘)𝑡) = ((coe1‘(𝑖𝑈𝑡))‘𝑘))
13853adantr 472 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
139 simplrr 820 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → 𝑗𝑁)
140139anim1i 593 . . . . . . . . . . . . 13 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑗𝑁𝑡𝑁))
141140ancomd 466 . . . . . . . . . . . 12 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡𝑁𝑗𝑁))
14243, 14, 15decpmate 20765 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0) ∧ (𝑡𝑁𝑗𝑁)) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
143138, 141, 142syl2anc 696 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (𝑡(𝑊 decompPMat (𝐾𝑘))𝑗) = ((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))
144137, 143oveq12d 6823 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)) = (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))
145144eqcomd 2758 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) ∧ 𝑡𝑁) → (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))) = ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))
146145mpteq2dva 4888 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))) = (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))
147146oveq2d 6821 . . . . . . 7 ((((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))) = (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))
148147mpteq2dva 4888 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘)))))) = (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗))))))
149148oveq2d 6821 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ (((coe1‘(𝑖𝑈𝑡))‘𝑘)(.r𝑅)((coe1‘(𝑡𝑊𝑗))‘(𝐾𝑘))))))) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
150106, 132, 1493eqtrd 2790 . . . 4 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑅 Σg (𝑘 ∈ (0...𝐾) ↦ (𝑅 Σg (𝑡𝑁 ↦ ((𝑖(𝑈 decompPMat 𝑘)𝑡)(.r𝑅)(𝑡(𝑊 decompPMat (𝐾𝑘))𝑗)))))))
15113, 102, 1503eqtr4rd 2797 . . 3 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
152151ralrimivva 3101 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗))
15343, 14pmatring 20692 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
15420, 153syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
155 simprl 811 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
156 simprr 813 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
157 eqid 2752 . . . . . . 7 (.r𝐶) = (.r𝐶)
15815, 157ringcl 18753 . . . . . 6 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
159154, 155, 156, 158syl3anc 1473 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
1601593adant3 1126 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16143, 14, 15, 22, 44decpmatcl 20766 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
162160, 161syld3an2 1514 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴))
16322matring 20443 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
16421, 163syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ Ring)
165 ringcmn 18773 . . . . 5 (𝐴 ∈ Ring → 𝐴 ∈ CMnd)
166164, 165syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ CMnd)
167 fzfid 12958 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (0...𝐾) ∈ Fin)
168164adantr 472 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝐴 ∈ Ring)
16932adantr 472 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑅 ∈ Ring)
170 simpl2l 1280 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑈𝐵)
17140adantl 473 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑘 ∈ ℕ0)
172169, 170, 1713jca 1122 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑈𝐵𝑘 ∈ ℕ0))
173172, 45syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴))
174 simpl2r 1282 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → 𝑊𝐵)
17551adantl 473 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝐾𝑘) ∈ ℕ0)
176169, 174, 1753jca 1122 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑅 ∈ Ring ∧ 𝑊𝐵 ∧ (𝐾𝑘) ∈ ℕ0))
177176, 54syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴))
178 eqid 2752 . . . . . . 7 (.r𝐴) = (.r𝐴)
17944, 178ringcl 18753 . . . . . 6 ((𝐴 ∈ Ring ∧ (𝑈 decompPMat 𝑘) ∈ (Base‘𝐴) ∧ (𝑊 decompPMat (𝐾𝑘)) ∈ (Base‘𝐴)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
180168, 173, 177, 179syl3anc 1473 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐾)) → ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
181180ralrimiva 3096 . . . 4 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ∀𝑘 ∈ (0...𝐾)((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))) ∈ (Base‘𝐴))
18244, 166, 167, 181gsummptcl 18558 . . 3 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴))
18322, 44eqmat 20424 . . 3 ((((𝑈(.r𝐶)𝑊) decompPMat 𝐾) ∈ (Base‘𝐴) ∧ (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ∈ (Base‘𝐴)) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
184162, 182, 183syl2anc 696 . 2 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → (((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝑗) = (𝑖(𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘)))))𝑗)))
185152, 184mpbird 247 1 ((𝑅 ∈ Ring ∧ (𝑈𝐵𝑊𝐵) ∧ 𝐾 ∈ ℕ0) → ((𝑈(.r𝐶)𝑊) decompPMat 𝐾) = (𝐴 Σg (𝑘 ∈ (0...𝐾) ↦ ((𝑈 decompPMat 𝑘)(.r𝐴)(𝑊 decompPMat (𝐾𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  Vcvv 3332  cotp 4321  cmpt 4873   × cxp 5256  cfv 6041  (class class class)co 6805  cmpt2 6807  𝑚 cmap 8015  Fincfn 8113  0cc0 10120  cmin 10450  0cn0 11476  ...cfz 12511  Basecbs 16051  .rcmulr 16136  0gc0g 16294   Σg cgsu 16295  CMndccmn 18385  Ringcrg 18739  Poly1cpl1 19741  coe1cco1 19742   maMul cmmul 20383   Mat cmat 20407   decompPMat cdecpmat 20761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-ot 4322  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-ofr 7055  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-hom 16160  df-cco 16161  df-0g 16296  df-gsum 16297  df-prds 16302  df-pws 16304  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-subrg 18972  df-lmod 19059  df-lss 19127  df-sra 19366  df-rgmod 19367  df-psr 19550  df-mpl 19552  df-opsr 19554  df-psr1 19744  df-ply1 19746  df-coe1 19747  df-dsmm 20270  df-frlm 20285  df-mamu 20384  df-mat 20408  df-decpmat 20762
This theorem is referenced by:  decpmatmulsumfsupp  20772  pm2mpmhmlem1  20817  pm2mpmhmlem2  20818
  Copyright terms: Public domain W3C validator