MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmullem Structured version   Visualization version   GIF version

Theorem decpmatmullem 20624
Description: Lemma for decpmatmul 20625. (Contributed by AV, 20-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p 𝑃 = (Poly1𝑅)
decpmatmul.c 𝐶 = (𝑁 Mat 𝑃)
decpmatmul.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
decpmatmullem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Distinct variable groups:   𝑡,𝐵   𝐼,𝑙,𝑡   𝐽,𝑙,𝑡   𝐾,𝑙,𝑡   𝑡,𝑁   𝑡,𝑃   𝑅,𝑙,𝑡   𝑈,𝑙,𝑡   𝑊,𝑙,𝑡
Allowed substitution hints:   𝐵(𝑙)   𝐶(𝑡,𝑙)   𝑃(𝑙)   𝑁(𝑙)

Proof of Theorem decpmatmullem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
213ad2ant1 1102 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑅 ∈ Ring)
3 decpmatmul.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 decpmatmul.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
53, 4pmatring 20546 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
65adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝐶 ∈ Ring)
7 simpl 472 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑈𝐵)
87adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈𝐵)
9 simpr 476 . . . . . 6 ((𝑈𝐵𝑊𝐵) → 𝑊𝐵)
109adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊𝐵)
11 decpmatmul.b . . . . . 6 𝐵 = (Base‘𝐶)
12 eqid 2651 . . . . . 6 (.r𝐶) = (.r𝐶)
1311, 12ringcl 18607 . . . . 5 ((𝐶 ∈ Ring ∧ 𝑈𝐵𝑊𝐵) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
146, 8, 10, 13syl3anc 1366 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
15143adant3 1101 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) ∈ 𝐵)
16 simp33 1119 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
17 3simpa 1078 . . . 4 ((𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
18173ad2ant3 1104 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼𝑁𝐽𝑁))
193, 4, 11decpmate 20619 . . 3 (((𝑅 ∈ Ring ∧ (𝑈(.r𝐶)𝑊) ∈ 𝐵𝐾 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
202, 15, 16, 18, 19syl31anc 1369 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾))
213ply1ring 19666 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22 eqid 2651 . . . . . . . . . . 11 (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)
234, 22matmulr 20292 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐶))
2423eqcomd 2657 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2521, 24sylan2 490 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
26253ad2ant1 1102 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (.r𝐶) = (𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩))
2726oveqd 6707 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑈(.r𝐶)𝑊) = (𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊))
2827oveqd 6707 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽))
29 eqid 2651 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
30 eqid 2651 . . . . . 6 (.r𝑃) = (.r𝑃)
3121adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring)
32313ad2ant1 1102 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑃 ∈ Ring)
33 simpl 472 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
34333ad2ant1 1102 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑁 ∈ Fin)
354, 29matbas2 20275 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐶))
3635, 11syl6reqr 2704 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
3721, 36sylan2 490 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
3837eleq2d 2716 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑈𝐵𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
3938biimpcd 239 . . . . . . . . 9 (𝑈𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4039adantr 480 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4140impcom 445 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
42413adant3 1101 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑈 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
4321, 35sylan2 490 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐶))
4443, 11syl6reqr 2704 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐵 = ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
4544eleq2d 2716 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑊𝐵𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4645biimpcd 239 . . . . . . . . 9 (𝑊𝐵 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4746adantl 481 . . . . . . . 8 ((𝑈𝐵𝑊𝐵) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁))))
4847impcom 445 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵)) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
49483adant3 1101 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝑊 ∈ ((Base‘𝑃) ↑𝑚 (𝑁 × 𝑁)))
50 simp31 1117 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐼𝑁)
51 simp32 1118 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → 𝐽𝑁)
5222, 29, 30, 32, 34, 34, 34, 42, 49, 50, 51mamufv 20241 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(𝑃 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5328, 52eqtrd 2685 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼(𝑈(.r𝐶)𝑊)𝐽) = (𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))
5453fveq2d 6233 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽)) = (coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))))))
5554fveq1d 6231 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝐼(𝑈(.r𝐶)𝑊)𝐽))‘𝐾) = ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾))
5632adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑃 ∈ Ring)
5750adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐼𝑁)
58 simpr 476 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑡𝑁)
59 simpl2l 1134 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑈𝐵)
604, 29, 11, 57, 58, 59matecld 20280 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝐼𝑈𝑡) ∈ (Base‘𝑃))
6151adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐽𝑁)
62 simpl2r 1135 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑊𝐵)
634, 29, 11, 58, 61, 62matecld 20280 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑡𝑊𝐽) ∈ (Base‘𝑃))
6429, 30ringcl 18607 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6556, 60, 63, 64syl3anc 1366 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
6665ralrimiva 2995 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ∀𝑡𝑁 ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)) ∈ (Base‘𝑃))
673, 29, 2, 16, 66, 34coe1fzgsumd 19720 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))))
68 simpl1r 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝑅 ∈ Ring)
69 eqid 2651 . . . . . . . 8 (.r𝑅) = (.r𝑅)
703, 30, 69, 29coe1mul 19688 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐼𝑈𝑡) ∈ (Base‘𝑃) ∧ (𝑡𝑊𝐽) ∈ (Base‘𝑃)) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
7168, 60, 63, 70syl3anc 1366 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))))))
72 oveq2 6698 . . . . . . . . 9 (𝑘 = 𝐾 → (0...𝑘) = (0...𝐾))
73 oveq1 6697 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑘𝑙) = (𝐾𝑙))
7473fveq2d 6233 . . . . . . . . . 10 (𝑘 = 𝐾 → ((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)) = ((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))
7574oveq2d 6706 . . . . . . . . 9 (𝑘 = 𝐾 → (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))) = (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))
7672, 75mpteq12dv 4766 . . . . . . . 8 (𝑘 = 𝐾 → (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙)))) = (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))
7776oveq2d 6706 . . . . . . 7 (𝑘 = 𝐾 → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7877adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) ∧ 𝑘 = 𝐾) → (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝑘𝑙))))) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
7916adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → 𝐾 ∈ ℕ0)
80 ovexd 6720 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))) ∈ V)
8171, 78, 79, 80fvmptd 6327 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) ∧ 𝑡𝑁) → ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾) = (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))
8281mpteq2dva 4777 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾)) = (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙)))))))
8382oveq2d 6706 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝑅 Σg (𝑡𝑁 ↦ ((coe1‘((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))‘𝐾))) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8467, 83eqtrd 2685 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → ((coe1‘(𝑃 Σg (𝑡𝑁 ↦ ((𝐼𝑈𝑡)(.r𝑃)(𝑡𝑊𝐽)))))‘𝐾) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
8520, 55, 843eqtrd 2689 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑈𝐵𝑊𝐵) ∧ (𝐼𝑁𝐽𝑁𝐾 ∈ ℕ0)) → (𝐼((𝑈(.r𝐶)𝑊) decompPMat 𝐾)𝐽) = (𝑅 Σg (𝑡𝑁 ↦ (𝑅 Σg (𝑙 ∈ (0...𝐾) ↦ (((coe1‘(𝐼𝑈𝑡))‘𝑙)(.r𝑅)((coe1‘(𝑡𝑊𝐽))‘(𝐾𝑙))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cotp 4218  cmpt 4762   × cxp 5141  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  0cc0 9974  cmin 10304  0cn0 11330  ...cfz 12364  Basecbs 15904  .rcmulr 15989   Σg cgsu 16148  Ringcrg 18593  Poly1cpl1 19595  coe1cco1 19596   maMul cmmul 20237   Mat cmat 20261   decompPMat cdecpmat 20615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-psr 19404  df-mpl 19406  df-opsr 19408  df-psr1 19598  df-ply1 19600  df-coe1 19601  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-decpmat 20616
This theorem is referenced by:  decpmatmul  20625
  Copyright terms: Public domain W3C validator