![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatval0 | Structured version Visualization version GIF version |
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, most general version. (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
decpmatval0 | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-decpmat 20616 | . . 3 ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))) |
3 | dmeq 5356 | . . . . . 6 ⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom 𝑚 = dom 𝑀) |
5 | 4 | dmeqd 5358 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → dom dom 𝑚 = dom dom 𝑀) |
6 | oveq 6696 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
7 | 6 | fveq2d 6233 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑀𝑗))) |
9 | simpr 476 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾) | |
10 | 8, 9 | fveq12d 6235 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → ((coe1‘(𝑖𝑚𝑗))‘𝑘) = ((coe1‘(𝑖𝑀𝑗))‘𝐾)) |
11 | 5, 5, 10 | mpt2eq123dv 6759 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑘 = 𝐾) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
12 | 11 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) ∧ (𝑚 = 𝑀 ∧ 𝑘 = 𝐾)) → (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
13 | elex 3243 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ V) |
15 | simpr 476 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
16 | dmexg 7139 | . . . . . 6 ⊢ (𝑀 ∈ 𝑉 → dom 𝑀 ∈ V) | |
17 | dmexg 7139 | . . . . . 6 ⊢ (dom 𝑀 ∈ V → dom dom 𝑀 ∈ V) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V) |
19 | 18, 18 | jca 553 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
20 | 19 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V)) |
21 | mpt2exga 7291 | . . 3 ⊢ ((dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) | |
22 | 20, 21 | syl 17 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾)) ∈ V) |
23 | 2, 12, 14, 15, 22 | ovmpt2d 6830 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (𝑀 decompPMat 𝐾) = (𝑖 ∈ dom dom 𝑀, 𝑗 ∈ dom dom 𝑀 ↦ ((coe1‘(𝑖𝑀𝑗))‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ℕ0cn0 11330 coe1cco1 19596 decompPMat cdecpmat 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-decpmat 20616 |
This theorem is referenced by: decpmatval 20618 |
Copyright terms: Public domain | W3C validator |